• Title/Summary/Keyword: Singular Point

Search Result 212, Processing Time 0.026 seconds

SPECTRAL ANALYSIS OF THE MGSS PRECONDITIONER FOR SINGULAR SADDLE POINT PROBLEMS

  • RAHIMIAN, MARYAM;SALKUYEH, DAVOD KHOJASTEH
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.175-187
    • /
    • 2020
  • Recently Salkuyeh and Rahimian in (Comput. Math. Appl. 74 (2017) 2940-2949) proposed a modification of the generalized shift-splitting (MGSS) method for solving singular saddle point problems. In this paper, we present the spectral analysis of the MGSS preconditioner when it is applied to precondition the singular saddle point problems with the (1, 1) block being symmetric. Some eigenvalue bounds for the spectrum of the preconditioned matrix are given. We show that all the real eigenvalues of the preconditioned matrix are in a positive interval and all nonzero eigenvalues having nonzero imaginary part are contained in an intersection of two circles.

Delay-dependent Stabilization of Singular Systems with Multiple Internal and External Incommensurate Constant Point Delays

  • Xie, Yong-Fang;Gui, Wei-Hua;Jiang, Zhao-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.515-525
    • /
    • 2008
  • In this paper, the problem of delay-dependent stabilization for singular systems with multiple internal and external incommensurate constant point delays is investigated. The condition when a singular system subject to point delays is regular independent of time delays is given and it can be easily test with numerical or algebraic methods. Based on Lyapunov-Krasovskii functional approach and the descriptor integral-inequality lemma, a sufficient condition for delay-dependent stability is obtained. The main idea is to design multiple memoryless state feedback control laws such that the resulting closed-loop system is regular independent of time delays, impulse free, and asymptotically stable via solving a strict linear matrix inequality (LMI) problem. An explicit expression for the desired memoryless state feedback control laws is also given. Finally, a numerical example illustrates the effectiveness and the availability for the proposed method.

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SINGULAR SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Wang, Lin;Lu, Xinyi
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.877-894
    • /
    • 2013
  • In this paper, we study the existence and uniqueness of solutions for a singular system of nonlinear fractional differential equations with integral boundary conditions. We obtain existence and uniqueness results of solutions by using the properties of the Green's function, a nonlinear alternative of Leray-Schauder type, Guo-Krasnoselskii's fixed point theorem in a cone. Some examples are included to show the applicability of our results.

EXISTENCE OF THREE POSITIVE SOLUTIONS OF A CLASS OF BVPS FOR SINGULAR SECOND ORDER DIFFERENTIAL SYSTEMS ON THE WHOLE LINE

  • Liu, Yuji;Yang, Pinghua
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.359-380
    • /
    • 2017
  • This paper is concerned with a kind of boundary value problem for singular second order differential systems with Laplacian operators. Using a multiple fixed point theorem, sufficient conditions to guarantee the existence of at least three positive solutions of this kind of boundary value problem are established. An example is presented to illustrate the main results.

GLOBAL EXISTENCE OF SOLUTIONS FOR A SYSTEM OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS

  • LIU, YUJI;WONG, PATRICIA J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.327-342
    • /
    • 2015
  • By employing a fixed point theorem in a weighted Banach space, we establish the existence of a solution for a system of impulsive singular fractional differential equations. Some examples are presented to illustrate the efficiency of the results obtained.

FAMILIES OF NONLINEAR TRANSFORMATIONS FOR ACCURATE EVALUATION OF WEAKLY SINGULAR INTEGRALS

  • BEONG IN YUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.3
    • /
    • pp.194-206
    • /
    • 2023
  • We present families of nonlinear transformations useful for numerical evaluation of weakly singular integrals. First, for end-point singular integrals, we define a prototype function with some appropriate features and then suggest a family of transformations. In addition, for interior-point singular integrals, we develop a family of nonlinear transformations based on the aforementioned prototype function. We take some examples to explore the efficiency of the proposed nonlinear transformations in using the Gauss-Legendre quadrature rule. From the numerical results, we can find the superiority of the proposed transformations compared to some existing transformations, especially for the integrals with high singularity strength.

SINGULAR THIRD-ORDER 3-POINT BOUNDARY VALUE PROBLEMS

  • Palamides, Alex P.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.697-710
    • /
    • 2010
  • In this paper, we prove existence of infinitely many positive and concave solutions, by means of a simple approach, to $3^{th}$ order three-point singular boundary value problem {$x^{\prime\prime\prime}(t)=\alpha(t)f(t,x(t))$, 0 < t < 1, $x(0)=x'(\eta)=x^{\prime\prime}(1)=0$, (1/2 < $\eta$ < 1). Moreover with respect to multiplicity of solutions, we don't assume any monotonicity on the nonlinearity. We rely on a combination of the analysis of the corresponding vector field on the phase-space along with Knesser's type properties of the solutions funnel and the well-known Krasnosel'ski$\breve{i}$'s fixed point theorem. The later is applied on a new very simple cone K, just on the plane $R^2$. These extensions justify the efficiency of our new approach compared to the commonly used one, where the cone $K\;{\subset}\;C$ ([0, 1], $\mathbb{R}$) and the existence of a positive Green's function is a necessity.

Numerical solution of singular integral equation for multiple curved branch-cracks

  • Chen, Y.Z.;Lin, X.Y.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.85-95
    • /
    • 2010
  • In this paper, numerical solution of the singular integral equation for the multiple curved branch-cracks is investigated. If some quadrature rule is used, one difficult point in the problem is to balance the number of unknowns and equations in the solution. This difficult point was overcome by taking the following steps: (a) to place a point dislocation at the intersecting point of branches, (b) to use the curve length method to covert the integral on the curve to an integral on the real axis, (c) to use the semi-open quadrature rule in the integration. After taking these steps, the number of the unknowns is equal to the number of the resulting algebraic equations. This is a particular advantage of the suggested method. In addition, accurate results for the stress intensity factors (SIFs) at crack tips have been found in a numerical example. Finally, several numerical examples are given to illustrate the efficiency of the method presented.

EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR SINGULAR GENERALIZED LAPLACIAN PROBLEMS WITH A PARAMETER

  • Kim, Chan-Gyun
    • East Asian mathematical journal
    • /
    • v.38 no.5
    • /
    • pp.593-601
    • /
    • 2022
  • In this paper, we consider singular 𝜑-Laplacian problems with nonlocal boundary conditions. Using a fixed point index theorem on a suitable cone, the existence results for one or two positive solutions are established under the assumption that the nonlinearity may not satisfy the L1-Carathéodory condition.