• 제목/요약/키워드: Single-photon emission tomography

검색결과 168건 처리시간 0.025초

SPECT 심근영상의 영상분할을 이용한 3차원 재구성 (3D Reconstruction Using Segmentation of Myocardial SPECT)

  • 정재은;이준행;최석윤;이상복
    • 한국산학기술학회논문지
    • /
    • 제11권6호
    • /
    • pp.2240-2245
    • /
    • 2010
  • 심근영상의 SPECT(Single Photon Emission Computed tomography)검사는 감마선을 방출하는 방사성의약품을 환자에게 정맥주사한 후 이 의약품이 심장에 고루 퍼지면 관심부위를 촬영하여 질병으로 인한 변화를 컴퓨터를 이용하여 진단하는 검사법이다. 기능적인 정보를 담고 있는 심근관류 영상은 비침습적인 심근질환 검사에 유용한 방법이지만, 물리적 인자들에 의해 잡음과 낮은 해상도는 판도하는데 어려움을 주게 된다. 본 논문은 심근영상을 레벨 셋 알고리즘을 이용하여 영상을 분할하고 분할된 영역을 3차원으로 구현하여 판독에 도움을 주는 방안을 제안하였다. 판독의 어려움을 해결하기 위하여 레벨 셋을 이용하여 관심부위인 좌심실 영역을 분할하였고 분할된 영역을 3차원영상으로 모델링 하였다.

뇌 Single Photon Emission Computer Tomography 영상을 이용한 정신분열병 환자의 초기 증상 차이에 대한 연구 (Comparative Study on Initial Symptoms Using Single Photon Emission Computer Tomography in Schizophrenia)

  • 이진구;김성민;서영덕;김기성;왕성근;지익성;김정란
    • 생물정신의학
    • /
    • 제17권3호
    • /
    • pp.127-135
    • /
    • 2010
  • Objectives : This study was conducted to compare between hallucination group and delusion group in patient with schizophrenia, using Brain $^{99m}Tc$-ECD PECT. Methods : Among 16 patients with less than 3 schizophrenic episodes, 8 patients whose initial symptom was hallucination were assigned to the hallucination group, and other 8 patients with initial sumptom of delusion were assinged to the hallucination group. All of the patients clinically evaluated using the PANSS and BPRS. Both groups of patients and 8 healthy subjects underwent $^{99m}Tc$-ECD PECT. Results : Score of thinking disturbance subscale of BPRS were significantly lower in the hallucination group than the delusion group. In SPECT analysis, the hallucination group showed significantly increased perfusion in some areas of the right temporal lobe, bilateral limbic lobes and left parietal lobe compared to delusion group. Both group had a reduced rCBF in some areas of the frontal lobe. Conclusion : The hallucniation group, compared with the delusion group, showed significantly increased regional cerebral blood flow in some regions. Therefore, this data suggests that different neural substrates may affect the process of auditory hallucination and delusion.

Optimization of block-matching and 3D filtering (BM3D) algorithm in brain SPECT imaging using fan beam collimator: Phantom study

  • Do, Yongho;Cho, Youngkwon;Kang, Seong-Hyeon;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3403-3414
    • /
    • 2022
  • The purpose of this study is to model and optimize the block-matching and 3D filtering (BM3D) algorithm and to evaluate its applicability in brain single-photon emission computed tomography (SPECT) images using a fan beam collimator. For quantitative evaluation of the noise level, the coefficient of variation (COV) and contrast-to-noise ratio (CNR) were used, and finally, a no-reference-based evaluation parameter was used for optimization of the BM3D algorithm in the brain SPECT images. As a result, optimized results were derived when the sigma values of the BM3D algorithm were 0.15, 0.2, and 0.25 in brain SPECT images acquired for 5, 10, and 15 s, respectively. In addition, when the sigma value of the optimized BM3D algorithm was applied, superior results were obtained compared with conventional filtering methods. In particular, we confirmed that the COV and CNR of the images obtained using the BM3D algorithm were improved by 2.40 and 2.33 times, respectively, compared with the original image. In conclusion, the usefulness of the optimized BM3D algorithm in brain SPECT images using a fan beam collimator has been proven, and based on the results, it is expected that its application in various nuclear medicine examinations will be possible.

A new efficient route for synthesis of R,R- and S,S-hexamethylpropyleneamine oxime for labeling with technetium-99m

  • Vinay Kumar Banka;Young Ju Kim;Yun-Sang Lee;Jae Min Jeong
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.75-91
    • /
    • 2020
  • [99mTc]Tc-Hexamethylpropylene amine oxime (HMPAO) is currently used as a regional cerebral blood flow imaging agent for single photon emission computed tomography (SPECT). The HMPAO ligand exists in two isomeric forms: d,l and meso showing different properties in vivo. Later studies indicated that brain uptake patterns of 99mTc-complexes formed from separated enantiomers differed. Separation of enantiomers is difficult by fractional crystallizations method. Usually, the substance is obtained in low chemical yield in a time-consuming procedure. Furthermore, the final product still contains some impurity. So we have developed new efficient route for synthesis of R,R- and S,S-HMPAO enantiomeric compounds in 6-steps. Nucleophilic substitution (SN2) reactions of 2,2-dimethylpropane-1,3-diamine either with S- (1a) or R-methyl2-chloropropanoate (1b) were performed to produce compounds R,R- (2a) or S,S-isomer (2b) derivatives protected with benzylchloroformate (Cbz), respectively. And then Weinreb amide and methylation reaction using Grignard reagent, oxime formation with ketone group and deprotectiion of Cbz group by hydrogenolysis gave S,S- (7a) or R,R-HMPAO (7b), respectively. Entaniomeric compounds were synthesied with high yield and purity without any undesired product. The 7a or 7b kits containing 10 ㎍ SnCl2-2H2O were labeled with 99mTc with high radiolabeling yield (90%).

납 표준물질을 이용한 방사성동위원소 Thallium-201의 화학적 분리공정 개발 (Development of Chemical Separation Process for Thallium-201 Radioisotope with Lead Standard Material)

  • 이준영;김태현;박정훈
    • 방사선산업학회지
    • /
    • 제17권4호
    • /
    • pp.543-549
    • /
    • 2023
  • Thallium-201 (201Tl) is a medical radioisotope which emits gamma rays when it decays and used in myocardial perfusion scans in single-photon emission tomography due to its similar properties to potassium. Currently, the Korea Institute of Radiological & Medical Sciences is the only institution producing 201Tl in Korea, and optimization of 201Tl production research is necessary to meet supply compared to domestic demand. To this end, technical analysis of plating target production and chemical separation methods essential for 201Tl production research is conducted. It deals with the process of generating and separating 201Tl radioisotope and target production, It can be generated through a nuclear reaction such as natHg(p,xn)201Tl, 201Hg(p,n)201Tl, natPb(p,xn)201Bi → 201Pb → 201Tl, 205Tl(p,5n)201Pb → 201Tl, and considering impure nuclide generated simultaneously with the use of proton beam energy of 35 MeV or less, it is intended to be produced using the 203Tl(p,3n)201Pb→201Tl nuclear reaction. In particular, the chemical separation of Tl is a very important element, and the chemical separation methods that can separate it is broadly divided into four types, including solid phase extraction, liquid-liquid, electrochemical, and ion exchange membrane separation. Some chemical separations require additional separation steps, such as methods using selective adsorption. Therefore, this technical report describes four chemical separation methods and seeks to separate high-purity 201Tl using a method without additional separation steps

Hybrid Imaging in Oncology

  • Fatima, Nosheen;uz Zaman, Maseeh;Gnanasegaran, Gopinath;Zaman, Unaiza;Shahid, Wajeeha;Zaman, Areeba;Tahseen, Rabia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.5599-5605
    • /
    • 2015
  • In oncology various imaging modalities play a crucial role in diagnosis, staging, restaging, treatment monitoring and follow up of various cancers. Stand-alone morphological imaging like computerized tomography (CT) and magnetic resonance imaging (MRI) provide a high magnitude of anatomical details about the tumor but are relatively dumb about tumor physiology. Stand-alone functional imaging like positron emission tomography (PET) and single photon emission tomography (SPECT) are rich in functional information but provide little insight into tumor morphology. Introduction of first hybrid modality PET/CT is the one of the most successful stories of current century which has revolutionized patient care in oncology due to its high diagnostic accuracy. Spurred on by this success, more hybrid imaging modalities like SPECT/CT and PET/MR were introduced. It is the time to explore the potential applications of the existing hybrid modalities, developing and implementing standardized imaging protocols and train users in nuclear medicine and radiology. In this review we discuss three existing hybrid modalities with emphasis on their technical aspects and clinical applications in oncology.

신경계 퇴행성 질환에서의 도파민 운반체 영상 (Dopamine Transporter Imaging in Neurodegenerative Disorders)

  • 김재우
    • 대한핵의학회지
    • /
    • 제37권1호
    • /
    • pp.34-42
    • /
    • 2003
  • The dopamine transporter (DAT) is responsible for the re-uptake of dopamine from the synaptic cleft and is located on dopaminergic nerve terminals only. DAT single photon emission computed tomography (SPECT) and positron omission tomography (PET) imaging, therefore, offer the unique opportunity to study via striatal uptake the integrity of presynaptic dopaminergic nerve terminals in vivo. In recent years SPECT and PET using specific ligands binding to DAT have evolved as an useful tool for diagnosing and monitoring progression of neurodegenerative disorders affecting dopaminergic systems. This article briefly reviews the literature dealing with DAT SPECT and PET imaging in parkinsonism and other neurodegenerative disorders.

MEG 영상진단 검사에 관한 연구 (A Study on the MEG Imaging)

  • 김종규
    • 대한임상검사과학회지
    • /
    • 제37권2호
    • /
    • pp.123-128
    • /
    • 2005
  • Magnetoencephalography (MEG) is the measurement of the magnetic fields produced by electrical activity in the brain, usually conducted externally, using extremely sensitive devices such as Superconducting Quantum Interference Device (SQUID). MEG needs complex and expensive measurement settings. Because the magnetic signals emitted by the brain are on the order of a few femtoteslas (1 fT = 10-15T), shielding from external magnetic signals, including the Earth's magnetic field, is necessary. An appropriate magnetically shielded room is very expensive, and constitutes the bulk of the expense of an MEG system. MEG is a relatively new technique that promises good spatial resolution and extremely high temporal resolution, thus complementing other brain activity measurement techniques such as electroencephalography (EEG), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI). MEG combines functional information from magnetic field recordings with structural information from MRI. The clinical uses of MEG are in detecting and localizing epileptic form spiking activity in patients with epilepsy, and in localizing eloquent cortex for surgical planning in patients with brain tumors. Magnetoencephalography may be used alone or together with electroencephalography, for the measurement of spontaneous or evoked activity, and for research or clinical purposes.

  • PDF

Advanced neuroimaging techniques for evaluating pediatric epilepsy

  • Lee, Yun Jeong
    • Clinical and Experimental Pediatrics
    • /
    • 제63권3호
    • /
    • pp.88-95
    • /
    • 2020
  • Accurate localization of the seizure onset zone is important for better seizure outcomes and preventing deficits following epilepsy surgery. Recent advances in neuroimaging techniques have increased our understanding of the underlying etiology and improved our ability to noninvasively identify the seizure onset zone. Using epilepsy-specific magnetic resonance imaging (MRI) protocols, structural MRI allows better detection of the seizure onset zone, particularly when it is interpreted by experienced neuroradiologists. Ultra-high-field imaging and postprocessing analysis with automated machine learning algorithms can detect subtle structural abnormalities in MRI-negative patients. Tractography derived from diffusion tensor imaging can delineate white matter connections associated with epilepsy or eloquent function, thus, preventing deficits after epilepsy surgery. Arterial spin-labeling perfusion MRI, simultaneous electroencephalography (EEG)-functional MRI (fMRI), and magnetoencephalography (MEG) are noinvasive imaging modalities that can be used to localize the epileptogenic foci and assist in planning epilepsy surgery with positron emission tomography, ictal single-photon emission computed tomography, and intracranial EEG monitoring. MEG and fMRI can localize and lateralize the area of the cortex that is essential for language, motor, and memory function and identify its relationship with planned surgical resection sites to reduce the risk of neurological impairments. These advanced structural and functional imaging modalities can be combined with postprocessing methods to better understand the epileptic network and obtain valuable clinical information for predicting long-term outcomes in pediatric epilepsy.

기능적 영상술을 이용한 다약제 내성의 체내 진단 (Functional Imaging of the Multidrug Resistance In Vivo)

  • 이재태
    • 대한핵의학회:학술대회논문집
    • /
    • 대한핵의학회 2001년도 제40차 춘계학술대회 및 연수교육
    • /
    • pp.66-75
    • /
    • 2001
  • Although diverse mechanisms are involved in multidrug resistance for chemotherapeutic drugs, the development of cellular P-glycoprotein(Pgp) and multidrug-resistance associated protein (MRP) are important factors in the chemotherapy failure to cancer. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However these methods do not yield information about dynamic function of Pgp and MRP un vivo. Single photon emission tomography (SPECT) and positron emission tomography (PET) are available for the detection of Pgp and MRP-mediated transport. $^{99m}Tc$-sestaMIBl and other $^{99m}Tc$-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies for tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with $^{11}C$ have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N-$[^{11}C]$acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. Results obtained from recent publications are reviewed to confirm the feasibility of using SPECT and PET to study the functionality of MDR transporters in vivo.

  • PDF