DOI QR코드

DOI QR Code

Optimization of block-matching and 3D filtering (BM3D) algorithm in brain SPECT imaging using fan beam collimator: Phantom study

  • Do, Yongho (Department of Nuclear Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center) ;
  • Cho, Youngkwon (Department of Radiological Science, Cheongju University) ;
  • Kang, Seong-Hyeon (Department of Health Science, General Graduate School of Gachon University) ;
  • Lee, Youngjin (Department of Radiological Science, College of Health Science, Gachon University,)
  • Received : 2022.02.06
  • Accepted : 2022.04.14
  • Published : 2022.09.25

Abstract

The purpose of this study is to model and optimize the block-matching and 3D filtering (BM3D) algorithm and to evaluate its applicability in brain single-photon emission computed tomography (SPECT) images using a fan beam collimator. For quantitative evaluation of the noise level, the coefficient of variation (COV) and contrast-to-noise ratio (CNR) were used, and finally, a no-reference-based evaluation parameter was used for optimization of the BM3D algorithm in the brain SPECT images. As a result, optimized results were derived when the sigma values of the BM3D algorithm were 0.15, 0.2, and 0.25 in brain SPECT images acquired for 5, 10, and 15 s, respectively. In addition, when the sigma value of the optimized BM3D algorithm was applied, superior results were obtained compared with conventional filtering methods. In particular, we confirmed that the COV and CNR of the images obtained using the BM3D algorithm were improved by 2.40 and 2.33 times, respectively, compared with the original image. In conclusion, the usefulness of the optimized BM3D algorithm in brain SPECT images using a fan beam collimator has been proven, and based on the results, it is expected that its application in various nuclear medicine examinations will be possible.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF-2021R1F1A1061440).

References

  1. C.R. Park, S.H. Kang, Y. Lee, Median modified wiener filter for improving the image quality of gamma camera images, Nucl. Eng. Technol. 52 (2020) 2328-2333. https://doi.org/10.1016/j.net.2020.03.022
  2. S.L. Pimlott, A. Sutherland, Molecular tracers for the PET and SPECT imaging of disease, Chem. Soc. Rev. 40 (2011) 149-162. https://doi.org/10.1039/B922628C
  3. A. Santra, R. Kumar, Brain perfusion single photon emission computed tomography in major psychiatric disorders: from basics to clinical practice, Indian J. Nucl. Med. 29 (2014) 210-221. https://doi.org/10.4103/0972-3919.142622
  4. V. Valotassiou, J. Malamitsi, J. Papatriantafyllou, E. Dardiotis, I. Tsougos, D. Psimadas, S. Alexiou, G. Hadjigeorgiou, P. Georgoulias, SPECT and PET imaging in Alzheimer's disease, Ann. Nucl. Med. 32 (2018) 583-593. https://doi.org/10.1007/s12149-018-1292-6
  5. T.A. Henderson, M.J. Lierop, M. McLean, J.M. Uszler, J.F. Thornton, Y.H. Siow, D.G. Pavel, J. Cardaci, P. Cohen, Functional neuroimaging in psychiatrydaiding in diagnosis and guiding treatment. What the American Psychiatric Association does not know, Front. Psychiatr. 15 (2020), https://doi.org/10.3389/fpsyt.2020.00276.
  6. S.C. Moore, K. Kouris, I. Cullum, Collimator design for single photon emission tomography, Eur. J. Nucl. Med. 19 (1992) 138-150.
  7. M.B. Tomas, P.V. Pugliese, G.G. Tronco, C. Love, C.J. Palestro, K.J. Nichols, Pinhole versus parallel-hole collimators for parathyroid imaging: an intraindividual comparison, J. Nucl. Med. Technol. 36 (2008) 189-194. https://doi.org/10.2967/jnmt.108.055640
  8. S. Kimiaei, S.A. Larsson, H. Jacobsson, Collimator design for improved spatial resolution in SPECT and planar scintigraphy, J. Nucl. Med. 37 (1996) 1417-1421.
  9. Y. Lee, H.J. Kim, Performance evaluation of a small CZT pixelated semiconductor gamma camera system with a newly designed stack-up parallelhole collimator, Nucl. Instrum. Methods Phys. Res. 794 (2015) 54-61. https://doi.org/10.1016/j.nima.2015.05.007
  10. Y. Lee, H.J. Ryu, S.W. Lee, S.J. Park, H.J. Kim, Comparison of ultra-highresolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system, Nucl. Instrum. Methods Phys. Res. 713 (2013) 33-39. https://doi.org/10.1016/j.nima.2013.03.014
  11. B.M.W. Tsui, G.T. Gullberg, E.R. Edgerton, D.R. Gilland, J.R. Perry, W.H. Mccartney, Design and clinical utility of a fan beam collimator for SPECT imaging of the head, J. Nucl. Med. 27 (1986) 810-819.
  12. K.V. Audenhaege, R.V. Holen, S. Vandenberghe, C. Vanhove, S.D. Metzler, S.C. Moore, Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging, Med. Phys. 42 (2015) 4796-4813. https://doi.org/10.1118/1.4927061
  13. K. Morita, A. Maebatake, R. Iwasaki, Y. Shiotsuki, K. Himuro, S. Baba, M. Sasaki, Evaluation of the reconstruction parameters of brain dopamine transporter SPECT images obtained by a fan beam collimator: a comparison with parallelhole Collimators, Asia-Oceania J. Nucl. Med. Biol. 6 (2018) 120-128.
  14. C.B. Lim, L.T. Chang, R.J. Jaszczak, Performance analysis of three camera configurations for single photon emission computed tomography, IEEE Trans. Nucl. Sci. 27 (2018) 559-568.
  15. S. Ozaki, A. Haga, E. Chao, C. Maurer, K. Nawa, T. Ohta, T. Nakamoto, Y. Nozawa, T. Magome, M. Nakano, K. Nakagawa, Fast statistical iterative reconstruction for mega-voltage computed tomography, J. Med. Invest. 67 (2020) 30-39. https://doi.org/10.2152/jmi.67.30
  16. C.R. Park, S.H. Kang, Y. Lee, Median modified wiener filter for improving the image quality of gamma camera images, Nucl. Eng. Technol. 52 (2020) 2328-2333. https://doi.org/10.1016/j.net.2020.03.022
  17. Y. Lee, Performance evaluation of noise reduction algorithm with median filter using improved thresholding method in pixelated semiconductor gamma camera system: a numerical simulation study, Nucl. Eng. Technol. 51 (2019) 439-443. https://doi.org/10.1016/j.net.2018.10.005
  18. M.Y. Jang, C.R. Park, S.H. Kang, Y. Lee, Experimental study of the fast non-local means noise reduction algorithm using the Hoffman 3D brain phantom in nuclear medicine SPECT image, Optik 224 (2020), 165440. https://doi.org/10.1016/j.ijleo.2020.165440
  19. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process. 16 (2007) 2080-2095. https://doi.org/10.1109/TIP.2007.901238
  20. M. Lebrun, An analysis and implementation of the BM3D image denoising method, Image Process. Line 2 (2012) 175-213. https://doi.org/10.5201/ipol.2012.l-bm3d
  21. T. Zhao, J. Hoffman, M. McNitt-Gray, D. Ruan, Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics, Med. Phys. 23 (2018), https://doi.org/10.1002/mp.13252.
  22. V. Hanchate, K. Jochi, MRI denoising using BM3D equipped with noise invalidation denoising technique and VST for improved contrast, SN Appl. Sci. 2 (2020) 234. https://doi.org/10.1007/s42452-020-1937-7
  23. B. Song, Z. Duan, Y. Gao, T. Shao, Adaptive BM3D algorithm for image denoising using coefficient of variation, 22th Int. Conf. Info. Fusion (FUSION) (2019) 1-8.
  24. A. Mittal, A.K. Moorthy, A.C. Bovik, No-reference image quality assessment in the spatial domain, IEEE Trans. Image Process. 21 (2012) 4695-4708. https://doi.org/10.1109/TIP.2012.2214050
  25. S. Lee, Y. Lee, Performance evaluation of median-modified Wiener filter algorithm in high-resolution complementary metaleoxideesemiconductor radio-magnetic X-ray imaging system: an experimental study, Nucl. Instrum. Methods Phys. Res. 1010 (2021), 165509. https://doi.org/10.1016/j.nima.2021.165509
  26. J. Park, C.K. Kang, Y. Lee, Quantitative evaluation of the image quality using the fast nonlocal means denoising approach in diffusion-weighted magnetic resonance imaging with high b-value, J. Kor. Phys. Soc. 78 (2021) 244-250. https://doi.org/10.1007/s40042-020-00028-4
  27. M.M. Alqahtani, K.P. Willowson, C. Constable, R. Fulton, P.L. Kench, Optimization of 99mTc whole-body SPECT/CT image quality: a phantom study, J. Appl. Clin. Med. Phys. (2022), https://doi.org/10.1002/acm2.13528.
  28. Y. Lee, Improved quality using newly designed algorithms in gamma- and Xray fusion images with a photon counting CZT detector: combining the median modified Wiener filter and edge detection method, Optik 245 (2021), 167681. https://doi.org/10.1016/j.ijleo.2021.167681
  29. O.L. Kapucu, F. Nobili, A. Varrone, J. Booij, T.V. Borght, K. Nagren, J. Darcourt, K. Tatsch, K.J. Van Laere, EANM procedure guideline for brain perfusion SPECT using 99mTc-labelled radiopharmaceuticals, version 2, Eur. J. Nucl. Med. Mol. Imag. (2009), https://doi.org/10.1007/s00259-009-1266-y.
  30. H.S. Jeong, Y.A. Chung, J.S. Park, I.U. Song, Y. Yang, asLong- term efficacy of memantine in Parkinson's disease dementia: an 18-month prospective perfusion single photon emission computed tomography preliminary study, Dement. Neurocognitive Disord. 15 (2016) 43-48. https://doi.org/10.12779/dnd.2016.15.2.43
  31. J.J. van der Zande, M. Joling, I.G. Happach, C. Vriend, Ph Scheltens, J. Booij, A.W. Lemstra, Serotonergic deficits in dementia with Lewy bodies with concomitant Alzheimer's disease pathology: an 123I-FP-CIT SPECT study, Neuroimage: Clinic 25 (2020), 102062. https://doi.org/10.1016/j.nicl.2019.102062
  32. A. Sala, S.P. Caminiti, L. Presotto, A. Pilotto, C. Liguori, A. Chiaravalloti, V. Garibotto, G.B. Frisoni, M. D'Amelio, B. Paghera, O. Schillaci, N. Mercuri, A. Padovani, D. Perani, In vivo human molecular neuroimaging of dopaminergic vulnerability along the Alzheimer's disease phases, Alzheimer's Res. Ther. 13 (2021), https://doi.org/10.1186/s13195-021-00925-1.
  33. M. Decuyper, J. Maebe, R.V. Holen, S. Vandenberghe, Artificial intelligence with deep learning in nuclear medicine and radiology, EJNMMI Phys. 8 (2021), https://doi.org/10.1186/s40658-021-00426-y.
  34. K. Kim, Y. Lee, Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system, Nucl. Eng. Technol. 53 (2021) 2341-2347. https://doi.org/10.1016/j.net.2021.01.011
  35. L.H. Hu, J. Betancur, T. Sharir, A.J. Einstein, S. Bokhari, M.B. Fish, T.D. Ruddy, P.A. Kaufmann, A.J. Sinusas, E.J. Miller, T.M. Bateman, S. Dorbala, M.D. Carli, G. Germano, F. Commandeur, J.X. Liang, Y. Otaki, B.K. Tamarappoo, D. Dey, D.S. Berman, P.J. Slomka, Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry, Eur. Heart J. Cardiovasc. Imag. 21 (2020) 549-559. https://doi.org/10.1093/ehjci/jez177
  36. J. Tsuchiya, K. Yokoyama, K. Yamagiwa, R. Watanabe, K. Kimura, M. Kishino, C. Chan, E. Asma, U. Tateishi, Deep learning-based image quality improvement of 18F-fluorodeoxyglucose positron emission tomography: a retrospective observational study, EJNMMI Phys. 8 (2021), https://doi.org/10.1186/s40658-021-00377-4.