• Title/Summary/Keyword: Single-phase AC-AC converter

Search Result 224, Processing Time 0.027 seconds

Single-Phase Z-Source AC/AC Converter with Wide Range Output Voltage Operation

  • Nguyen, Minh-Khai;Jung, Young-Gook;Lim, Young-Cheol
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.736-747
    • /
    • 2009
  • A new type of single-phase Z-source AC/AC converter based on a single-phase matrix converter is proposed in this paper. The proposed single-phase Z-source AC/AC converter has unique features; namely that the output voltage can be bucked and in-phase/out-of-phase with the input voltage; that the output voltage can be boosted and in-phase/out-of-phase with the input voltage. The converter employs a safe-commutation strategy to conduct along a continuous current path, which results in the elimination of voltage spikes on switches without the need for a snubber circuit. The operating principles of the proposed single-phase Z-source AC/AC converter are described, and a circuit analysis is provided. To verify the performance of the proposed converter, a laboratory prototype based on a TMS320F2812 DSP was constructed. The simulation and the experimental results verified that the output voltage can be bucked-boosted and in-phase with the input voltage, and that the output voltage can be bucked-boosted and out-of-phase with the input voltage.

Solving the commutation problem of single-phase PWM AC-AC converter using basic switching cell (스위칭 셀을 이용하여 커뮤테이션 문제를 해결한 단상 PWM AC-AC 컨버터)

  • Shin, Hyunhak;Cha, Honnyong;Kim, Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.194-195
    • /
    • 2013
  • This paper presents novel single-phase PWM AC-AC converters that can solve commutation problem in single-phase direct AC-AC converter without sensing input voltage polarity. By using the basic switching cell concept and coupled inductor, the proposed converter can be short and open-circuit without damping switching devices. A 120 W prototype is built and tested to verify performance of the proposed converter.

  • PDF

Single-Phase Z-Source AC-AC Converter (SZAC) with Buck/Boost In-Phase and Out-Of-Phase Operation

  • Khai, Nguyen Minh;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.376-378
    • /
    • 2008
  • A new family of single-phase Z-source ac-ac converter(SZAC) based on single-phase matrix converter (SPMC) is proposed in this paper. Compared to conventional Z-source ac-ac converter, the proposed SZAC has unique feature: providing a wide range of output ac voltage with buck/boost in-phase (maintaining phase angle) and buck/boost out-of-phase (reversing phase angle) operation. A new commutation strategy is used to eliminate voltage spikes on switches. The operating principle of the proposed SZAC is presented. Analysis and experimental results are also presented.

  • PDF

A study on the single phase AC/AC converter (단상 AC/AC 컨버터에 관한 연구)

  • Bae, Sang-June;Chung, Ta-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1931-1933
    • /
    • 1998
  • In this paper, single-phase PWM AC to AC converter that operates with unit power factor and sinusoidal input line currents is presented. The output voltage of this converter is able to be obtain step up voltage as well as step down voltage. because the converter applies to operating method of buck-boost converter. The control of this converter is performed with PI control method. By using this control method low lipples in the output current and the voltage as well as fast dynamic response are achieved.

  • PDF

A Single-Phase Quasi Z-Source AC-AC Converter with a Series Connection of the Output Terminals (출력이 직렬 결합된 단상 Quasi Z-소스 AC-AC 컨버터)

  • Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.415-429
    • /
    • 2011
  • In this study, a single-phase quasi Z-source AC-AC converters with a series connection of the output terminals is proposed. The proposed system has configuration that the input terminals of two quasi Z-source AC-AC converters are connected in parallel and its output terminals are connected in series. The out of phase mode and in phase mode of the proposed system are presented. To verify the validity of the proposed converter, a DSP controlled hardware was made and PSIM simulation was executed. As a result, controlling the duty ratio of the converter, the desired buck-boost output voltages could be generated. For each modes, as compared with the single converter operation, the proposed converter could enhance the efficiency and input power factor according to different loads. Also, in case of the out of phase mode under the constant load, the efficiency and input power factor of the proposed system are increased 10[%], 35[%] respectively in compared with the single converter. And, the output voltage is constantly controlled in dynamic state in case while the load is suddenly changed.

A Low COST SOFT-SWITCHED AC-TO-TC CONVERTER

  • 최주엽;목형수;김택용
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.135-140
    • /
    • 1997
  • A highly efficient single-phase/three-phase compatible ac-to-dc converter is proposed and analyzed, which includes three identical single-phase both soft-switched dc-to-dc converter with boost converter as a pre-regulator for input power factor correction (PFC). The proposed converter structure provides a cost reduction and easy implementation of compatibility between single-phase 220V and three-phase 220V/380V with their inputs in delta or wye connections.

  • PDF

Single-Phase Voltage-Fed Z-Source Matrix Converter

  • Fang, Xupeng;Liu, Jie
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.46-52
    • /
    • 2012
  • This paper proposes a novel single-phase ac-ac converter topology based on the Z-source concept. The converter provides buck-boost function and plays the role of frequency changer. Compared to the traditional ac-dc-ac converter, it uses fewer devices, realizes direct ac-ac power conversion, and has a simpler circuit structure, so as to have higher efficiency and better circuit characteristics. Compared to the traditional matrix converter, it provides a wider voltage regulation range. The circuit topology, operating principle, control method and simulation results are given in this paper, and the rationality and feasibility is verified.

Implementation of Voltage Sag/Swell Compensator using Direct Power Conversion (직접전력변환 방식을 이용한 전압 강하/상승 보상기의 구현)

  • Lee, Sang-Hoey;Cha, Han-Ju;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1544-1550
    • /
    • 2009
  • In this paper, a new single phase voltage sag/swell compensator using direct power conversion is proposed. A new compensator consists of input/output filter, series transformer and direct ac-ac converter, which is a single-phase back-to-back PWM converter without dc-link capacitors. Advantages of the proposed compensator include: simple power circuit by eliminating dc link electrolytic capacitors and thereby, improved reliability and increased life time of the entire compensator; simple PWM strategy or compensating voltage sag/swell at the same time and reduced switching losses in the ac-ac converter. Further, the proposed scheme is able to adopt simple switch commutation method without requiring complex four-step commutation method that is commonly employed in the direct power conversion. Simulation and experimental results are shown to demonstrate the advantages of the new compensator and PWM strategy. A 220V, 3kVA single-phase compensator based on the digital signal processor controller is built and tested.

POWER FACTOR CORRECTION OF CO2 WELDING MACHINE USING SINGLE-SWITCH THREE-PHASE AC/DC CONVERTER

  • Kim, Jse-Mun;Kim, Yuen-Chung;Ahn, Jung-Jun;Won, Chung-Yuen;Kim, Sei-Chan
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.663-667
    • /
    • 1998
  • This paper describes for reducing harmonic distortion on CO2 welding machine with nonlinear load characteristic using single-switch three-phase AC/DC converter. The low-order harmonic component amplitude of the phase current of single-switch three-phase discontinuous mode is calculated. Experimental results show that CO2 welding machine with single-switch three-phase AC/DC converter is effectively controlled with power factor correction for phase current during welding time.

  • PDF

Steady State and Transient Analysis of Switched Reluctance Motor Drive Fed from a Controlled AC-DC Rectifier

  • Moussa, Mona Fouad
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1495-1502
    • /
    • 2017
  • The Theory of operation of switched reluctance motors (SRM) depends on the reluctance torque, where energy is transferred to stator winding only. Although its construction is simple, the electrical design is complex, due to the switching configuration needed to deliver power to stator coils. However, because of the nonlinearly of magnetic circuit, SRM has torque ripple. This paper proposes a new strategy to drive SRM from a single-phase AC supply. Each stator winding is connected to AC-DC or AC-AC converters, which is called branch. All branches are connected in parallel to a single-phase AC supply. A shaft encoder allows current production in stator winding during the positive torque production region and terminates it during the negative torque production region. A magnetic flux is produced between stator poles when current is supplied from AC supply to stator coil and repeats many cycles as long as the rate of change of stator inductance is positive. Different possibilities for the configurations of AC-AC or AC-DC converters are introduced to drive SRM from the single-phase AC supply. A case study is presented for a SRM fed from AC supply through semi-controlled AC-DC converter is presented. A simulation model is introduced and verified by experimental rig for two-phase SRM.