• Title/Summary/Keyword: Single-Hop

Search Result 174, Processing Time 0.019 seconds

An Enhanced DESYNC Scheme for Simple TDMA Systems in Single-Hop Wireless Ad-Hoc Networks (단일홉 무선 애드혹 네트워크에서 단순 TDMA 시스템을 위한 DESYNC 알고리즘 개선 방안)

  • Hyun, Sanghyun;Lee, Jeyul;Yang, Dongmin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.9
    • /
    • pp.293-300
    • /
    • 2014
  • TDMA(Time Division Multiple Access) is a channel access scheme for shared medium networks. The shared frequency is divided into multiple time slots, some of which are assigned to a user for communication. Techniques for TDMA can be categorized into two classes: synchronous and asynchronous. Synchronization is not suitable for small scale networks because it is complicated and requires additional equipments. In contrast, in DESYNC, a biologically-inspired algorithm, the synchronization can be easily achieved without a global clock or other infrastructure overhead. However, DESYNC spends a great deal of time to complete synchronization and does not guarantee the maximum time to synch completion. In this paper, we propose a lightweight synchronization scheme, C-DESYNC, which counts the number of participating nodes with GP (Global Packet) signal including the information about the starting time of a period. The proposed algorithm is mush simpler than the existing synchronization TDMA techniques in terms of cost-effective method and guarantees the maximum time to synch completion. Our simulation results show that C-DESYNC guarantees the completion of the synchronization process within only 3 periods regardless of the number of nodes.

Multi-Channel Pipelining for Energy Efficiency and Delay Reduction in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율성과 지연 감소를 위한 다중 채널 파리프라인 기법)

  • Lee, Yoh-Han;Kim, Daeyoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.11-18
    • /
    • 2014
  • Most of the energy efficient MAC protocols for wireless sensor networks (WSNs) are based on duty cycling in a single channel and show competitive performances in a small number of traffic flows; however, under concurrent multiple flows, they result in significant performance degradation due to contention and collision. We propose a multi-channel pipelining (MCP) method for convergecast WSN in order to address these problems. In MCP, a staggered dynamic phase shift (SDPS) algorithms devised to minimize end-to-end latency by dynamically staggering wake-up schedule of nodes on a multi-hop path. Also, a phase-locking identification (PLI) algorithm is proposed to optimize energy efficiency. Based on these algorithms, multiple flows can be dynamically pipelined in one of multiple channels and successively handled by sink switched to each channel. We present an analytical model to compute the duty cycle and the latency of MCP and validate the model by simulation. Simulation evaluation shows that our proposal is superior to existing protocols: X-MAC and DPS-MAC in terms of duty cycle, end-to-end latency, delivery ratio, and aggregate throughput.

The Effects of Active Movement Myofascial Decompression Therapy and Static Myofascial Decompression Therapy on Range of Motion, Muscle Strength, Functional Movement in Young Adults. (젊은 성인에서 능동 움직임을 결합한 근막감압치료 적용과 정적 적용이 관절가동범위, 근력, 기능적 움직임에 미치는 영향)

  • Lee, Jee-Hyun;Kim, Tae-Hyeon;Kang, Si-Yun;Kum, Do-Gun;Lee, Sung-Yeon;Do, Kwang-Sun;Kim, Chang-Sook;Bae, Ju-Han;Park, Jun-Hyuck;Kim, Jae-Eun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.3
    • /
    • pp.165-173
    • /
    • 2021
  • Purpose : Myofascial decompression is frequently mentioned as a method applied to cupping. The purpose of this study is to evaluate and compare active range of motion (AROM), muscle strength, and functional movement by applying myofascial decompression to the hamstrings. Methods : This study evaluated AROM, muscle strength, and functional movement by applying active movement myofascial decompression and static myofascial decompression to the dominant leg, respectively, in a crossover design conducted with normal adults (n=21) in their average 20s enrolled at G University in G city, Gyeongsangbuk-do. Active movement myofascial decompression was implemented for five minutes at a rate of 100 bpm to make the beats in flexion and extension respectively. Static myofascial decompression was only performed for five minutes while at rest. All of these interventions were performed at a cupping depth of two mm. After a one-week washout period, static was applied again to compare the same dependent variables. Results : Regarding AROM and muscle strength, both groups showed significant differences in the before and after results (p<.05). However, in the Functional Reach Aspect and Single Leg Hop test, the active movement myofascial decompression group showed better results. There was no statistical difference between the Active movement myofascial decompression group and Static myofascial decompression group in any dependent variable (p<.05). Conclusion : As a result of this experiment, both active movement myofascial decompression and static myofascial decompression had a positive effect on dependent variable. Therefore this study is meaningful in that it is easier and simpler to see the effect on flexibility, muscle strength, and functional movement just by implementing movement myofascial decompression.

Computed tomography investigation of the three-dimensional structure and production method of White Porcelain Water Dropper with Openwork Lotus Scroll Design and Eight Trigram Design in Cobalt-blue Underglaze (CT 조사를 통한 청화백자투각연당 초팔괘문연적의 3차원적 구조와 제작방법에 대한 고찰)

  • Na, Ahyoung;Hwang, Hyunsung
    • Conservation Science in Museum
    • /
    • v.25
    • /
    • pp.1-8
    • /
    • 2021
  • This study investigated White Porcelain Water Dropper with Openwork Lotus Scroll Design and Eight Trigram Design in Cobalt-blue Underglaze (hereinafter, the "water dropper") in the collection of the National Museum of Korea using computed tomography (CT). A replica was produced to examine both the structure and its original production method. The CT scanning identified no joint lines or pores in the clay, which suggests that the body (the lower part of the water dropper) was shaped in a single piece using a mold and was then matched with a mold-formed lid (the upper part of the water dropper). The inner container of the body portion was roughly trimmed with a bamboo knife so that its upper surface could be securely attached to the bottom of the lid and prevent any leakage in the joined surface. It appears that the inner container for storing water was made first in a cylindrical shape that met the unit of quantity used at the time and could be easily formed by molding. It was transformed into a trapezoid shape during the process of combining it with the lid. A cylindrical inner container was reproduced using silicon 3D printing to compare its capacity with that of the original inner container. The comparison revealed that the reproduced container had a capacity of 152.5㎖, whereas the original container holds approximately 168.6㎖, a figure similar to three hop (around 174㎖) in Joseon-period units of quantity. Since the capacity of the cylindrical inner container corresponds to a known measure from the late Joseon dynasty, it is likely that the water dropper was originally produced to contain a cylindrical inner container.