• Title/Summary/Keyword: Single phase to ground fault

Search Result 76, Processing Time 0.03 seconds

Characteristics of the SFCL by turn-ratio of three-phase transformer

  • Jeong, I.S.;Choi, H.S.;Jung, B.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.34-38
    • /
    • 2013
  • According to the increase of electric consumption nowadays, power system becomes complicated. Due to this, the size of single line-to-ground fault from power system also increases to have many problems. In order to resolve these problems effectively, an Superconducting Fault Current Limiter(SFCL) was proposed and continuous study has been done. In this paper, an SFCL was combined to the neutral line of a transformer. An superconductivity has the characteristics of zero resistance below critical temperature. because of this, SFCL has nearly zero resistance. so we connecting SFCL to neutral line will not only have any loss in the normal operation but also have the less burden of electric power because of only limiting the initial fault current. We analyzed the characteristics of current, voltage according to the changes of turn ratio of 3 phase system in case of combinations of an SFCL to the neutral line. It was confirmed that the limiting rate of initial fault current by the increase of turn ratio was reduced.

New Fault Location Algorithms by Direct Analysis of Three-Phase Circuit Using Matrix Inverse Lemma for Unbalanced Distribution Power Systems

  • Park, Myeon-Song;Lee, Seung-Jae
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.79-84
    • /
    • 2003
  • Unbalanced systems, such as distribution systems, have difficulties in fault locations due to single-phase laterals and loads. This paper proposes new fault locations developed by the direct three-phase circuit analysis algorithms using matrix inverse lemma for the line-to-ground fault case and the line-to-line fault case in unbalanced systems. The fault location for balanced systems has been studied using the current distribution factor, by a conventional symmetrical transformation, but that for unbalanced systems has not been investigated due to their high complexity. The proposed algorithms overcome the limit of the conventional algorithm using the conventional symmetrical transformation, which requires the balanced system and are applicable to any power system but are particularly useful for unbalanced distribution systems. Their effectiveness has been proven through many EMTP simulations.

Ground Fault Current Variation of 22.9kV Multi Neutral Grounded Distribution System with CD Type Superconducting Cable (22.9kV 중성점 다중접지계통에 CD형 초전도케이블을 적용한 경우의 지락전류변화)

  • Lee, Jong-Bae;Hwang, Si-Dole;Sohn, Song-Ho;Lee, Geun-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.993-999
    • /
    • 2007
  • This paper discusses the effects of CD type superconducting cable operation in 22.9kV multi neutral grounded distribution system during L-G fault and counterplans to power system protection. In case of using the 3-phase CD-type superconducting cable, the inductance of superconducting cable system would be decreased due to the current of shield part of superconducting cable, which is opposite direction and nearly equal value with respect to main superconductor. However, when the shield circuit system is operated in shorted state, shield current decreases faulted ground current and give effects to power system protection scheme. This study examines the phenomena of single line to ground fault case in above mentioned system using the EMTDC program and discusses the right operation method of superconducting shield.

Fault Location Algorithm using Software Fault Tolerance (Software Fault Tolerance를 이용한 송전선로의 고장점 표정 알고리즘)

  • Jang, Yong-Won;Han, Seung-Su;Kim, Won-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.875-877
    • /
    • 2003
  • This paper use fault location algorithm for single-phase-to-ground faults on the teed circuit of a parallel transmission line that use only local end voltage and current information. When Newton-Raphson iteration method is used, the Initial value may cause error or cause not suitable result. Suggested new calculation model uses NVP methodology, which is one of the fault tolerance technology to solve this problem. EMTP simulation result has shown effectiveness of the algorithm under various conditions.

  • PDF

A Fault Location Algorithm for a Single Line Ground Fault on a Multi-Terminal Transmission Line (다단자 송전계통에서의 1선지락 고장시 고장점 표정 알고리즘)

  • 강상희;노재근;권영진
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.121-133
    • /
    • 2003
  • This paper presents a fault location algorithm for a single phase-to-ground fault on 3-terminal transmission systems. The method uses only the local end voltage and current signals. Other currents used for the algorithm are estimated by current distribution factors and the local end current. Negative sequence current is used to remove the effect of load current. Five distance equations based on Kirchhoff's voltage law are established for the location algorithm which can be applied to a parallel transmission line having a teed circuit. Separating the real and imaginary parts of each distance equation, final nonlinear equations that are functions of the fault location can be obtained. The Newton-Raphson method is then applied to calculate the estimated fault location. Among the solutions, a correct fault distance is selected by the conditions of the existence of solution. With the results of extensive S/W and H/W simulation tests, it was verified that the proposed algorithm can estimate an accurate fault distance in a 154kV model system.

Current Limiting Characteristics of Superconducting Fault Current Limiter for Reduction of Unsymmetrical Fault Current in a Three-Phase Power System (삼상전력계통의 비대칭고장전류 저감을 위한 초전도한류기의 전류제한특성)

  • Kim, Min-Yeong;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.8-8
    • /
    • 2010
  • In this paper, the limiting characteristics of the fault current in a power system with a superconducting fault current limiter(SFCL) applied into neutral line of main transformer in a distribution power line were analyzed. The SFCL applied into the neutral line of main transformer power system can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault. In addition, it could be decreased a number of SFCL and a load. This method could be expected to reduction of a power loss in the neutral line, because of a neutral line current is zero in ordinary times.

  • PDF

Characteristics of Superconducting Elements in Series-Connected Three-Phase Flux-Lock type SFCL (3상 자속구속형 한류기의 초전도 소자 직렬연결 특성분석)

  • Park, Hyoung-Min;Choi, Hyo-Sang;Cho, Yong-Sun;Hwang, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04b
    • /
    • pp.35-36
    • /
    • 2007
  • We investigated the characteristics of three phase flux-lock type SFCL. Three phase flux-lock type consists of three reactor wound on an iron core in each single phase and the secondary coil is connected to the superconducting elements in series. the superconducting elements with serial connection were quenched simultangously in the single line-to-ground fault.

  • PDF

A Study on the Algorithm for Fault Discrimination in Transmission Lines using Advanced Computational Intelligence(ACI) (ACI 기법을 이용한 송전선로 고장 종류 판별에 관한 연구)

  • Park Jae Hong;Lee Jong Beom
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.619-621
    • /
    • 2004
  • This paper presents the rapid and accurate algorithm for fault discrimination in transmission lines. When faults occur in transmission lines, fault discrimination is very important. If high impedance faults occur in transmission lines, it cannot be detected by overcurrent relays. The method using current and voltage cannot discriminate high impedance fault. Because of this reason this paper uses voltage and zero sequence current, and the proposed algorithm uses fuzzy logic method. This algorithm uses voltage and zero sequence current per period in case of faults. Single line ground fault and three-phase fault can be detective using voltage. Two-line ground fault and line to line fault and high impedance can be detected using zero sequence current. To prove the performance of the algorithm, it test algorithm with signal obtained from ATPDraw simulation.

  • PDF

An Investigation of the nominal rating current for breakers in distribution system due to the increased capacity of power transformer (주변압기 용량증설에 따른 배전계통의 차단기 정격차단전류 검토)

  • Cho, Seong-Soo;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.396-397
    • /
    • 2008
  • In order to evaluate the nominal rating of breakers in distribution system due to the increased capacity of power transformer from 60 to 100 MVA, the fault currents are calculated in the condition of 3-phase fault and single line-to-ground fault. Consequently, under the condition of the parallel operation of transformers the fault currents were exceed the nominal rating current of breakers in some areas.

  • PDF

Current Limiting Characteristics According to the Increase of Voltage in Separated Three-Phase Flux-Lock Type Superconducting Fault Current Limiter Using YBCO CC (YBCO CC를 이용한 분리된 삼상 자속구속형 고온초전도 전류제한기의 전압 증가에 따른 전류제한 특성)

  • Doo, Seung-Gyu;Du, Ho-Ik;Kim, Min-Ju;Kim, Yong-Jin;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.355-356
    • /
    • 2009
  • In this paper, we investigated the fault current limiting characteristics according to the increase of voltage in the separates three-phase flux-lock type high-Tc superconducting fault current limiter using YBCO CC. The separated three-phase flux-lock type SFCL consists of single-phase flux-phase type SFCL in each phase. Superconductor was using the YBCO CC. To analyze the current limiting characteristics of a three-phase flux-lock type SFCL, the short circuit experiments were carded out fault such as the triple line-to-ground fault. The experimental result shows that fault current limiting characteristics was improved on the high voltage level.

  • PDF