• Title/Summary/Keyword: Single degree of freedom

Search Result 424, Processing Time 0.021 seconds

An Algorithm for Self-determing Degrees-of-freedom of Shifting Systems (변속 시스템의 자유도 자율 판단 알고리즘)

  • 임원식;박영일;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.202-214
    • /
    • 1997
  • In automotive industries, one of major issues is the shifting shock, which is brought out when two clutches are engaged in an automatic transmission. The engagement and disengagement if two clutches means the variation of the D.O.F(degree of freedom) of system. Therefore to analyze the shifting performance, the variation of D.O.F should be considered in detail. Generally, the programs for analyzing the shifting transients have been developed as the problem-dependent codes because the artificial maris were usually used to indicate the change of shifting phase. To develop a software applicable to a general mechanism of transmissions, a self-determining algorithm of D.O.F must be applied. Through the experiences for the last several years, a generalized analysis software of shifting mechanism(so called by POTAS-MSM Version 2.0) has been developed. In this study, some major ideas of the software and the concept for the analysis of shifting characteristics are presented. In addition to that, this paper shows how to self -determine D.O.F of he multi-slipping systems using the stick-slip criterion on a single slipping mechanism. By using this software, the shifting characteristics of a vehicle are analyzed and compared with the experimental results.

  • PDF

Time-History Analysis on Structure Dynamic Response for the SDOF System of Ground Vibration by the Newmark $\beta$ method (Newmark $\beta$ 방법에 의한 지반진동의 단자유도계 구조물 동적응답 시간이력 해석)

  • Kim, Jong-In;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.292-298
    • /
    • 2010
  • The purpose of this study is to evaluate an effect of ground vibration caused by blasting on the concrete brick structure. For the purpose, dynamic response time-history of the structure assumed single degree of freedom (SDOF) system and vibration time-history directly measured from the structure were examined, using Newmark $\beta$ method based on data measured at ground. The time-history was interpreted from the measured data of ground and structure in single hole blasting. Vibration magnitude between ground vibration and structure in single hole blasting and 20 ms interval blasting was about three times and was shown larger vibration on the structure. By time-history analysis of structure dynamic response, the value was almost the same one with the data measured from the structure. It indicates that the vibration characteristics of structures may be predicted on the basis of the ground vibration data measured from the sub-ground of structure.

Closed-Form Solutions to Free Vibration Response of Single Degree of Freedom Systems with Coulomb Friction (쿨롱마찰을 갖는 단자유도계의 자유진동응답에 관한 닫힌 해)

  • Lee, Sung-Kyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.9-16
    • /
    • 2020
  • The objective of this study is to propose closed-form solutions to the free vibration response of single-degree-of-freedom (SDOF) systems, as part of fundamental research on dynamic systems with Coulomb friction. The motion of a dynamic system with Coulomb friction is described by a nonlinear differential equation, and, due to the variation in the sign of friction force term with the direction of motion, it is difficult to obtain the closed-form solution. To solve this problem, the nonlinear differential equation is directly computed by numerical integration, or an approximated solution is indirectly obtained using a linear differential equation wherein the damping effect due to Coulomb friction is replaced by an equivalent viscous damping term. However, these conventional methods do not provide a closed-form solution from a mathematical point of view. In this regard, closed-form solutions to the free vibration response of SDOF systems with Coulomb friction are derived herein by considering that the sign of the friction force term is reversed in each half-cycle of motion and by expanding it to the entire time history using the power series function. In addition, for a given initial condition, both the number of free vibration half-cycles and the response at the instant when free vibration motion stops are predicted under the condition that the motion of free vibration is stopped when the amplitude of the friction force is higher than that of the restoring force due to stiffness.

Evaluation of Inertial Interaction of a Multi-degree-of-freedom Structure during a Large-scale 1-g Shaking Table Test (대형 진동대 실험을 이용한 다자유도 구조물의 관성 상호작용 평가)

  • Chae, Jonghoon;Yoon, Hyungchul;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.17-28
    • /
    • 2022
  • The effect of the soil-structure interaction (SSI) on has been recently evaluated in shaking table tests. However, most of these tests were conducted on single-degree-of-freedom (SDOF) superstructures and a single-pile. This study investigates the inertial interaction effect of a multi-degree-of-freedom (MDOF) superstructure system with a group piles on a large-scale shaking table test. Whereas the SDOF superstructure system shows a single-frequency amplification tendency, the MDOF superstructure system exhibited amplification tendencies of the acceleration phase and frequency responses for multiple frequencies. In addition, the amplification phenomenon between the footing and the column-type superstructure exceeded that between the footing and the wall-type superstructure, indicating a greater inertial interaction effect of the column-type superstructure. The relationship between shear force and inertial force, the relative vertical and horizontal displacements on the footing was figured out. Also, the ananlysis of dynamic p-y curve at each depth was conducted. In summary, the MDOF and SDOP superstructure systems exhibited different behaviors and the column-type superstructure exerted a higher interaction effect than the wall-type superstructure.

A Study on the Robust Position Control of Single-rod Hydraulic System (편로드 유압시스템의 강인 위치제어에 관한 연구)

  • Cho, Taik-Dong;Seo, Song-Ho;Yang, Sang-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.128-135
    • /
    • 1999
  • A driving simulators of aircraft and vehicle may consist of hydraulic power systems with many single-rod cylinders. The single-rod hydraulic systems are convenient but need more robust control scheme in order to achieve a reliable performance against the wide range of operating disturbances and the inherent model uncertainties. $H_{\infty}$ control scheme was implemented to the 2 degree-of-freedom hydraulic device similar to the simple driving simulator. With the reasonable disturbances from sensor, base and pump and also with the linearization of model, the simulation and experimental results showed good agreements.

  • PDF

Probabilistic analysis of peak response to nonstationary seismic excitations

  • Wang, S.S.;Hong, H.P.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.527-542
    • /
    • 2005
  • The main objective of this study is to examine the accuracy of the complete quadratic combination (CQC) rule with the modal responses defined by the ordinates of the uniform hazard spectra (UHS) to evaluate the peak responses of the multi-degree-of-freedom (MDOF) systems subjected to nonstationary seismic excitations. For the probabilistic analysis of the peak responses, it is considered that the seismic excitations can be modeled using evolutionary power spectra density functions with uncertain model parameters. More specifically, a seismological model and the Kanai-Tajimi model with the boxcar or the exponential modulating functions were used to define the evolutionary power spectral density functions in this study. A set of UHS was obtained based on the probabilistic analysis of transient responses of single-degree-of-freedom systems subjected to the seismic excitations. The results of probabilistic analysis of the peak responses of MDOF systems were obtained, and compared with the peak responses calculated by using the CQC rule with the modal responses given by the UHS. The comparison seemed to indicate that the use of the CQC rule with the commonly employed correlation coefficient and the peak modal responses from the UHS could lead to significant under- or over-estimation when contributions from each of the modes are similarly significant.

Evaluation of N2 method for damage estimation of MDOF systems

  • Yaghmaei-Sabegh, Saman;Zafarvand, Sadaf;Makaremi, Sahar
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.155-165
    • /
    • 2018
  • Methods based on nonlinear static analysis as simple tools could be used for the seismic analysis and assessment of structures. In the present study, capability of the N2 method as a well-known nonlinear analysis procedure examines for the estimation of the damage index of multi-storey reinforced concrete frames. In the implemented framework, equivalent single-degree-of-freedom (SDOF) models are utilized for the global damage estimation of multi-degree-of-freedom (MDOF) systems. This method does not require high computational analysis and subsequently decreases the required time of seismic design and assessment process. To develop the methodology, RC frames with period range from 0.4 to 2.0 s under 40 records are studied. The effectiveness of proposed technique is evaluated through numerical study under near- and far-field earthquake ground motions. Finally, the results of developed models are compared with two other simplified schemes along with nonlinear time history analysis results of multi-storey frames. To improve the accuracy of damage estimation, a modified relation is presented based on the N2 method results for near- and far-field earthquakes.

Parametric Study for the Squeal Noise Reduction of an Automobile Water Pump (자동차용 워터펌프의 스퀼소음 저감을 위한 영향도분석)

  • Kim, B;Jung, W;Baek, H;Kang, D;Chung, J
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.492-497
    • /
    • 2013
  • In this study, a parametric study is performed to investigate the squeal noise of an automobile water pump. The squeal noise studied in this paper is generated by the self-excited torsional resonance of the rotating shaft, and this noise is related to the stick-slip phenomenon of the mechanical seal in the water pump. The mechanical seal friction has the characteristics of the negative velocity-gradient. The equations of motion of multiple-degree-of-freedom torsional vibration model is constructed by the Holzer's method and then the equation is transformed to an equivalent single-degree-of-freedom torsional resonance simulation model. A squeal noise criteria is determined by the simulation model to perform the parametric study. The design parameters(the mass moment of inertia of the pulley, the mass moment of inertia of the impeller, the length of the shafts, the radius of the shafts, spinning speed of the shafts, the position of the mechanical seal, radius of the mechanical seal, and normal load of the mechanical seal) are investigated to confirm the stability for the squeal noise.

  • PDF

Parametric Study for the Squeal Noise Reduction of an Automobile Water Pump (자동차용 워터펌프의 스퀼소음 저감을 위한 영향도 분석)

  • Kim, Bohyeong;Jung, W.;Baek, H.;Kang, D.;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.624-630
    • /
    • 2013
  • In this study, a parametric study is performed to investigate the squeal noise of an automobile water pump. The squeal noise studied in this paper is generated by the self-excited torsional resonance of the rotating shaft, and this noise is related to the stick-slip phenomenon of the mechanical seal in the water pump. The mechanical seal friction has the characteristics of the negative velocity-gradient. The equations of motion of multiple-degree-of-freedom torsional vibration model is constructed by the Holzer's method and then the equation is transformed to an equivalent single-degree-of-freedom torsional resonance simulation model. A squeal noise criteria is determined by the simulation model to perform the parametric study. The design parameters(the mass moment of inertia of the pulley, the mass moment of inertia of the impeller, the length of the shafts, the radius of the shafts, spinning speed of the shafts, the position of the mechanical seal, radius of the mechanical seal, and normal load of the mechanical seal) are investigated to confirm the stability for the squeal noise.

Computing input energy response of MDOF systems to actual ground motions based on modal contributions

  • Ucar, Taner
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.263-273
    • /
    • 2020
  • The use of energy concepts in seismic analysis and design of structures requires the understanding of the input energy response of multi-degree-of-freedom (MDOF) systems subjected to strong ground motions. For design purposes and non-time consuming analysis, however, it would be beneficial to associate the input energy response of MDOF systems with those of single-degree-of-freedom (SDOF) systems. In this paper, the theoretical formulation of energy input to MDOF systems is developed on the basis that only a particular portion of the total mass distributed among floor levels is effective in the nth-mode response. The input energy response histories of several reinforced concrete frames subjected to a set of eleven horizontal acceleration histories selected from actual recorded events and scaled in time domain are obtained. The contribution of the fundamental mode to the total input energy response of MDOF frames is demonstrated both graphically and numerically. The input energy of the fundamental mode is found to be a good indicator of the total energy input to two-dimensional regular MDOF structures. The numerical results computed by the proposed formulation are verified with relative input energy time histories directly computed from linear time history analysis. Finally, the elastic input energies are compared with those computed from time history analysis of nonlinear MDOF systems.