• Title/Summary/Keyword: Single crystalline phase

Search Result 147, Processing Time 0.025 seconds

Growth and Characteristics of YIG, Bi:YIG, TbBi:YIG Single Crystal Thick Films (YIG, Bi:YIG, TbBi:YIG 단결정 후막의 성장과 특성)

  • 윤석규;김근영;김명진;이형만;김회경;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.672-676
    • /
    • 2003
  • The single crystalline thick films of Y$_3$Fe$\sub$5/O$\sub$12/(YIG), Y$_3$Fe$\sub$5/O$\sub$12/(Bi:YIG), (TbBi)$_3$(FeAlGa)$\sub$5/O$\sub$12/ (TbBi:YIG) were grown on (GdCa)$_3$(GaMgZr)$\sub$5/O$\sub$12/ (SGGG) by Liquid Phase Epitaxy (LPE). The change of lattice mismatch, Bi concentration, characteristic of magnetic and surface morphology were investigated in the thick film growth as a function of species and amount of chemical element, while substrate rotation speed, supercooling and growth time were kept constant. It was observed that the lattice constant of garnet single crystalline thick films of TbBi:YIG (12.500 ${\AA}$) is closed to the one of the substrate (12.496 ${\AA}$). Besides magnetic field of saturation exhibits excellent results (150 Oe).

Facile Synthesis of CdTe Nanorods from the Growth of Te Nanorods

  • Xu, Weiwei;Niu, Jinzhong;Zheng, Shuang;Tian, Guimin;Wu, Xinghui;Cheng, Yongguang;Hu, Xiaoyang;Liu, Shuaishuai;Hao, Haoshan
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.185-190
    • /
    • 2017
  • One-dimensional CdTe nanorods (NRs) are obtained by the reaction of various Cd precursors with single crystalline Te nanorod templates, which are pre-synthesized from Te precursors by a simple and reproducible solvothermal method. Throughout the process, the diffraction intensity of different crystal facets of single crystalline Te NRs varied with reaction times. Finally, by alloying Cd ions along the axial direction of Te NRs, polycrystalline cubic phase CdTe NRs with diameters of 80-150 nm and length up to $1.2-2.4{\mu}m$ are obtained. The nucleation and growth processes of Te and CdTe NRs are discussed in details, and their properties are characterized by XRD, SEM, TEM, Raman scattering, and UV-vis absorption spectra. It was found that the key elements of synthesizing CdTe NRs such as reaction temperatures and Cd sources will strongly influence the final shape of CdTe NRs.

The effect of annealing temperature and solvent on the fabrication of YBCO thin films by MOD-TFA process (MOD-TFA 공정으로 YBCO 박막제조 시 열처리 온도와 용매의 영향)

  • 허순영;유재무;김영국;고재웅;이동철
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.84-87
    • /
    • 2003
  • $YBa_2$$Cu_3$$O_{7-x}$ (YBCO) thin films were fabricated by MOD-TFA process via dip-coating method on LaAlO$_3$, (LAO) single crystalline substrates. In this study, we investigated effect of annealing temperature and solvent on the microstructure and texture of YBCO thin films. The precursor films were annealed at various temperature to improve surface morphologies and phase purities. It was shown that the films annealed at relatively lower and higher temperature exhibit low phase purity and crystallinity. The effect of various solvents on surface morphologies and second phase has been investigated.

  • PDF

Structural Properties of TiO₂ Films Grown by Pulsed Laser Deposition

  • 윤하섭;김성규;임훙선
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.640-643
    • /
    • 1997
  • Pure titanium dioxide $(TiO_2)$ films were prepared by pulsed laser deposition on a single crystal Si(100) substrate. We have investigated the growth of crystalline titanium dioxide films with respect to substrate temperature and ambient oxygen pressure. The structural properties of the films were analyzed by X-ray diffraction. We found that the anatase as well as the rutile phases could be formed from the original rutile phase of the target $TiO_2$. At 0.75 torr of ambient oxygen pressure, the structure of $TiO_2$ film was amorphous at room temperature, anatase between 300 and 600 ℃, a mixture of anatase and rutile between 700 and 800 ℃, and only rutile at 900 ℃ and above. However, at a low ambient oxygen pressure, the rutile phase became dominant; the only rutile phase was obtained at the ambient oxygen pressure of 0.01 torr and the substrate temperature of 800 ℃. Therefore, the film structures were largely influenced by substrate temperature and ambient oxygen pressure.

Magnetic Properties of Multilayered and Mixed $Pr_{0.65}$Ca_{0.35}MnO_3/La_{0.7}Sr_{0.3}MnO_3$ Films

  • V. G. Prokhorov;Lee, Y. P.;V. S. Flis;Park, J. S.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.67-69
    • /
    • 2003
  • The magnetic properties of single- and poly-crystalline $La_{0.7}Sr_{0.3}MnO_3/Pr_{0.65}Ca_{0.35}MnO_3$ multilayered (ML) films, and composite (CP) $(La_{0.7}Sr_{0.3})_{0.5}(Pr_{0.65}Ca_{0.35}_{0.5}MnO_3$ films, prepared by laser ablation, have been investigated in a wide temperature range. It was shown that the transformation from an incoherent to a coherent interface in the ML films leads to an enhancement of the ferromagnetic coupling between layers and to a single-phase magnetic transition. The amorphous CP films demonstrate a paramagnetic behavior of the magnetization with a sharp peak at $T_{G}\approx$45 K, which was interpreted as the formation of Griffiths phase. A short-term annealing at $750^{\circ}C$ induced the complete crystallization of film, and a recovery of the ferromagnetic and the metal-insulator transitions.

Growth of Bi:YIG Thick Films by Change of PO/Bi2O3 Molar Ratio (PO/Bi2O3 변화에 따른 Bi:YIC 단결정 후박의 성장)

  • 윤석규;김근영;김용탁;정현민;임영민;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.589-593
    • /
    • 2002
  • The single crystalline thick fi1ms of Bi:Y$_3$Fe$_{5}$ $O_{12}$(Bi:YIG) were grown on (GdCa)$_3$(GaMgZr)$_{5}$ $O_{12}$(SGGG) by Liquid Phase Epitaxy (LPE). The changes of lattice mismatch and Bi concentration were investigated in the thick film growth as a function of PO/Bi$_2$ $O_3$ molar ratio, with keeping constant of substrate rotation speed, supercooling and growth time. It was grown that the lattice constant of the garnet single crystalline thick films and Bi content increased with decreasing of PO/Bi$_2$ $O_3$ molar ratio. Bi concentration decreased with increasing of the film thickness.

Low-temperature crystallization of high-dielectric (Ba,Sr)$TiO_3$ thin films for embedded capacitors

  • Cho, Kwang-Hwan;Kang, Min-Gyu;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.21-21
    • /
    • 2010
  • (Ba,Sr)$TiO_3$ (BST) thin film with a perovskite structure has potential for the practical application in various functional devices such as nonvolatile-memory components, capacitor, gate insulator of thin-film transistors, and electro-optic devices for display. Normally, the BST thin films derived from sol-gel and sputtering are amorphous or partially crystalline when processed below $600^{\circ}C$. For the purpose of integrating BST thin film directly into a Si-based read-out integrated circuit (ROIC), it is necessary to process the BST film below $400^{\circ}C$. The microstructural and electrical properties of low-temperature crystallized BST film were studied. The BST thin films have been fabricated at $350^{\circ}C$ by UV-assisted rapidly thermal annealing (RTA). The BST films are in a single perovskite phase and have well-defined electrical properties such as high dielectric constant, low dielectric loss, low leakage current density, and high breakdown voltage. Photoexcitation of the organics contained in the sol-gel-derived films by high-intensity UV irradiation facilitates elimination of the organics and formation of the single-crystalline phase films at low temperatures. The amorphous BST thin film was transformed to a highly (h00)-oriented perovskite structure by high oxygen pressure processing (HOPP) at as low as $350^{\circ}C$. The dielectric properties of BST film were comparable to (or even better than) those of the conventionally processed BST films prepared by sputtering or post-annealing at temperature above $600^{\circ}C$. When external pressure was applied to the well-known contractive BST system during annealing, the nucleation energy barrier was reduced; correspondingly, the crystallization temperature decreased. The UV-assisted RTA and HOPP, as compatible with existing MOS technology, let the BST films be integrated into radio-frequency circuit and mixed-signal integrated circuit below the critical temperature of $400^{\circ}C$.

  • PDF

Single-Crystal like MgB2 thin films grown on c-cut sapphire substrates

  • Duong, Pham Van;Ranot, Mahipal;Kang, Won Nam
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.7-9
    • /
    • 2014
  • Single-crystal like $MgB_2$ thin film was grown on (000l) $Al_2O_3$ substrate by using hybrid physical-chemical vapor deposition (HPCVD) system. Single crystal properties were studied by X-ray diffraction (XRD) and the full width at half maximum (FWHM) of the (0001) $MgB_2$ peak is $15^{\circ}$, which is very close to that has been reported for $MgB_2$ single-crystal. It indicates that the crystalline quality of thin film is good. Temperature dependence on resistivity was investigated by physical property measurement system (PPMS) in various applied fields from 0 to 9 T. The upper critical field ($H_{c2}$) and irreversibility field ($H_{irr}$) were determined from PPMS data, and the estimated values are comparable with that of $MgB_2$ single-crystals. The thin film shows a high critical temperature ($T_c$) of 40.4 K with a sharp superconducting transition width of 0.2 K, and a high residual resistivity ratio (RRR=21), it reflects that $MgB_2$ thin film has a pure phase structure.

Thermal Stability of Ru-inserted Nickel Monosilicides (루테늄 삽입층에 의한 니켈모노실리사이드의 안정화)

  • Yoon, Kijeong;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.159-168
    • /
    • 2008
  • Thermally-evaporated 10 nm-Ni/1 nm-Ru/(30 nm or 70 nm-poly)Si structures were fabricated in order to investigate the thermal stability of Ru-inserted nickel monosilicide. The silicide samples underwent rapid thermal anne aling at $300{\sim}1,100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process were formed on the top of the single crystal and polycrystalline silicon substrates mimicking actives and gates. The sheet resistance was measured using a four-point probe. High resolution X-ray diffraction and Auger depth profiling were used for phase and chemical composition analysis, respectively. Transmission electron microscope and scanning probe microscope(SPM) were used to determine the cross-sectional structure and surface roughness. The silicide, which formed on single crystal silicon and 30 nm polysilicon substrate, could defer the transformation of $Ni_2Si $i and $NiSi_2 $, and was stable at temperatures up to $1,100^{\circ}C$ and $1,100^{\circ}C$, respectively. Regarding microstructure, the nano-size NiSi preferred phase was observed on single crystalline Si substrate, and agglomerate phase was shown on 30 nm-thick polycrystalline Si substrate, respectively. The silicide, formed on 70 nm polysilicon substrate, showed high resistance at temperatures >$700^{\circ}C$ caused by mixed microstructure. Through SPM analysis, we confirmed that the surface roughness increased abruptly on single crystal Si substrate while not changed on polycrystalline substrate. The Ru-inserted nickel monosilicide could maintain a low resistance in wide temperature range and is considered suitable for the nano-thick silicide process.

Fabrication of Mg3Sb2 and Mg3Bi2 Compounds and their composites by mechanical alloying (기계적 합금법에 의한 Mg3Bi2와 Mg3Sb2 화합물 및 복합체의 제조)

  • Kim, In-Ki
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.189-194
    • /
    • 2013
  • Single phase crystalline powders of $Mg_3Sb_2$ and $Mg_3Bi_2$ were prepared by mechanical alloying Mg, Sb and Bi metals with planetary ball milling for 24~48 h. The compositions of starting raw materials for single phase $Mg_3Sb_2$ and $Mg_3Bi_2$ were 3Mg : 1.8Sb and 3Mg : 1.6Bi, respectively. Two types of mechanically alloyed powders obtained were mixed at some ratios for the fabrication of $Mg_3Sb_2-Mg_3Bi_2$ composites and then hot pressed under uniaxial pressure of 70 MPa at 723 K for 1 h. The main phase of composites was a stable phase similar to $Mg_3Bi_2$ phase with a small amount of Bi phase. The distributions of Sb and Bi elements on EDS mapping images were discontinuous and their compositional contours were clear, which means that the hot pressed specimens were composites composed of two compounds of $Mg_3Sb_2$ and $Mg_3Bi_2$.