• Title/Summary/Keyword: Single cell gap

Search Result 89, Processing Time 0.035 seconds

The structure of $Ga_2O_3$ nanomaterials synthesized by the GaN single crystal (GaN 단결정에 의해 제조된 $Ga_2O_3$ 나노물질의 구조)

  • 박상언;조채룡;김종필;정세영
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.120-120
    • /
    • 2003
  • The metallic oxide nanomaterials including ZnO, Ga$_2$O$_3$, TiO$_2$, and SnO$_2$ have been synthesized by a number of methods including laser ablation, arc discharge, thermal annealing procedure, catalytic growth processes, and vapor transport. We have been interested in preparing the nanomaterials of Ga$_2$O$_3$, which is a wide band gap semiconductor (E$_{g}$ =4.9 eV) and used as insulating oxide layer for all gallium-based semiconductor. Ga$_2$O$_3$ is stable at high temperature and a transparent oxide, which has potential application in optoelectronic devices. The Ga$_2$O$_3$ nanoparticles and nanobelts were produced using GaN single crystals, which were grown by flux method inside SUS$^{TM}$ cell using a Na flux and exhibit plate-like morphologies with 4 ~ 5 mm in size. In these experiments, the conventional electric furnace was used. GaN single crystals were pulverized in form of powder for the growth of Ga$_2$O$_3$ nanomaterials. The structure, morphology and composition of the products were studied mainly by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM).).

  • PDF

The Relationships between Discharge Cell Structure and Addressing Characteristics in AC PDP

  • Lee, Don-Kyu;Shim, Kyung-Ryeol;Kim, Young-Rak;Heo, Jeong-Eun;Kim, Dong-Hyun;Lee, Ho-Jun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.734-738
    • /
    • 2003
  • The addressing time should be reduced by modifying cell and/or driving method in order to replace the dual scan system by single scan and increase the luminance in large ac plasma display panel(PDP). In this paper, the relationships between of discharge cell structure and addressing time in ac PDP are investigated. It is found out that the addressing time was decreased with decreasing gap of ITO electrode and thickness of transparence dielectric layer on the front glass. The decrease rates were 4% per $10{\mu}m$ and 4% per $5{\mu}m$, respectively. Also in cases of decreasing height of barrier rip and thickness of white dielectric layer on the rear glass, addressing times were at the rate of 4% per $10{\mu}m$ and 4% per $2{\mu}m$, respectively.

  • PDF

Molecular Dynamic Simulation for Penetration of Carbon Nanotubes into an Array of Carbon Nnantotubes

  • Jang, Ilkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.290-296
    • /
    • 2020
  • When two layers of carbon nanotube (CNT) arrays are loaded to mate, the free ends of individual CNTs come into contact at the interface of the two layers. This leads to a higher contact resistance due to a smaller contact region. However, when the free CNT ends of one array penetrate into the mating array, the contact region increases, effectively lowering the contact resistance. To explore the penetration of mating CNTs, we perform molecular dynamic simulations of a simple unit cell model, incorporating four CNTs in the lower array layer coupled with a single moving CNT on the upper layer. The interaction with neighboring CNTs is modelled by long-range carbon bond order potential (LCBOP I). The model structure is optimized by energy minimization through the conjugate gradient method. A NVT ensemble is used for maintain a room temperature during simulation. The time integration is performed through the velocity-Verlet algorithm. A significant vibrational motion of CNTs is captured when penetration is not available, resulting in a specific vibration mode with a high frequency. Due to this vibrational behavior, the random behaviors of CNT motion for predicting the penetration are confirmed under the specific gap distances between CNTs. Thus, the probability of penetration is examined according to the gap distance between CNTs in the lower array and the aspect ratio of CNTs. The penetration is significantly affected by the vibration mode due to the van der Waals forces between CNTs.

Characteristic of the Sputtered CIGS Films in Relation to Heat Treatment Condition (스퍼터링법으로 제작한 CIGS 박막의 후열처리에 따른 물성 평가)

  • Jung, Jae-Heon;Cho, Sang-Hyun;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.16-21
    • /
    • 2013
  • CIGS (Cu-In-Ga-Se) films were deposited on the Mo coated soda lime glass (Mo/SLG) by RF magnetron sputtering using a single sintered target with different chemical compositions. Heat treatment of the CIGS films were carried out under three different conditions, 1step ($350^{\circ}C$ for 2 hour and $550^{\circ}C$ for 2 hour) and 2step ($350^{\circ}C$ for 1 hour and $550^{\circ}C$ for 1 hour). In the case of CIGS films post-annealed on 2step method, grain size remarkably increased compared to other methods, indicating that chemical composition [Cu/(Ga+In) = 1] of CIGS films was same as CIGS target. After heat treatment by 2step method, band gap energy of the CIGS film deposited at RF 80 W showed 1.4 eV which is broadly similar to identical band gap energy (1.2 eV) of CIGS film prepared by evaporation method. Therefore, 2step heat treatment method could be expected to low temperature process.

Low-threshold Photonic Crystal Lasers from InGaAsP Free-standing Slab Structures

  • Ryu, Han-Youl;Kim, Se-Heom;Kwon, Soon-Hong;Park, Hong-Gyu;Lee, Yong-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.59-71
    • /
    • 2002
  • Photonic band gap structures have a high potential for nearly zero-threshold lasers. This paper describes new-types of low-threshold photonic crystal lasers fabricated in InGaAsP slab waveguides free-standing in air. Two-types of photonic crystal lasers are studied. One is a single-cell nano-cavity laser formed in a square array of air holes. This photonic band gap laser operates in the smallest possible whispering gallery mode with a theoretical Q >30000 and exhibits low threshold pump power of 0.8 mW at room temperature. The nther laser does not have any cavity structure and the lasing operation originates from the enhanced optical density of states near photonic band edges. A very low threshold of 35 $\mu$W (incident pump power) is achieved from this laser at 80 K, one of the lowest values ever reported. This low threshold is benefited from low optical losses as well as enhanced material gain at low temperature.

The Study on Cu2ZnSnSe4 Thin Films without Annealed Grown by Pulsed Laser Deposition for Solar Cells

  • Bae, Jong-Seong;Byeon, Mi-Rang;Hong, Tae-Eun;Kim, Jong-Pil;Jeong, Ui-Deok;Kim, Yang-Do;O, Won-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.398.1-398.1
    • /
    • 2014
  • The $Cu_2ZnSnSe_4$ (CZTSe) thin films solar cell is one of the next generation candidates for photovoltaic materials as the absorber of thin film solar cells because it has optimal bandgap (Eg=1.0eV) and high absorption coefficient of $10^4cm^{-1}$ in the visible length region. More importantly, CZTSe consists of abundant and non-toxic elements, so researches on CZTSe thin film solar cells have been increasing significantly in recent years. CZTSe thin film has very similar structure and properties with the CIGS thin film by substituting In with Zn and Ga with Sn. In this study, As-deposited CZTSe thin films have been deposited onto soda lime glass (SLG) substrates at different deposition condition using Pulsed Laser Deposition (PLD) technique without post-annealing process. The effects of deposition conditions (deposition time, deposition temperature) onto the structural, compositional and optical properties of CZTSe thin films have been investigated, without experiencing selenization process. The XRD pattern shows that quaternary CZTSe films with a stannite single phase. The existence of (112), (204), (312), (008), (316) peaks indicates all films grew and crystallized as a stannite-type structure, which is in a good agreement with the diffraction pattern of CZTSe single crystal. All the films were observed to be polycrystalline in nature with a high (112) predominant orientation at $2{\theta}{\sim}26.8^{\circ}$. The carrier concentration, mobility, resistivity and optical band gap of CZTSe thin films depending on the deposition conditions. Average energy band gap of the CZTSe thin films is about 1.3 eV.

  • PDF

Preparation of SnS Thin Films by MOCVD Method Using Single Source Precursor, Bis(3-mercapto-1-propanethiolato) Sn(II)

  • Park, Jong-Pil;Song, Mi-Yeon;Jung, Won-Mok;Lee, Won-Young;Lee, Jin-Ho;Kim, Hang-Geun;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3383-3386
    • /
    • 2012
  • SnS thin films were deposited on glasses through metal organic chemical vapor deposition (MOCVD) method at relatively mild conditions, using bis(3-mercapto-1-propanethiolato) tin(II) precursor without toxic $H_2S$ gas. The MOCVD process was carried out in the temperature range of $300-400^{\circ}C$ and the average grain size in fabricated SnS films was about 500 nm. The optical band gap of the SnS film was about 1.3 eV which is in optimal range for harvesting solar radiation energy. The precursor and SnS films were characterized through infrared spectroscopy, nuclear magnetic resonance spectroscopy, DIP-EI mass spectroscopy, elemental analyses, thermal analysis, X-ray diffraction, and field emission scanning electron microscopic analyses.

Traffic control technologies without interruption for component replacement of long-span bridges using microsimulation and site-specific data

  • Zhou, Junyong;Shi, Xuefei;Zhang, Liwen;Sun, Zuo
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.169-178
    • /
    • 2019
  • The replacement of damaged components is an important task for long-span bridges. Conventional strategy for component replacement is to close the bridge to traffic, so that the influence of the surrounding environment is reduced to a minimum extent. However, complete traffic interruption would bring substantial economic losses and negative social influence nowadays. This paper investigates traffic control technologies without interruption for component replacement of long-span bridges. A numerical procedure of traffic control technologies is proposed incorporating traffic microsimulation and site-specific data, which is then implemented through a case study of cable replacement of a long-span cable-stayed bridge. Results indicate traffic load effects on the bridge are lower than the design values under current low daily traffic volume, and therefore cable replacement could be conducted without traffic control. However, considering a possible medium or high level of daily traffic volume, traffic load effects of girder bending moment and cable force nearest to the replaced cable become larger than the design level. This indicates a potential risk of failure, and traffic control should be implemented. Parametric studies show that speed control does not decrease but increase the load effects, and flow control using lane closure is not effectual. However, weight control and gap control are very effective to mitigate traffic load effects, and it is recommended to employ a weight control with gross vehicle weight no more than 65 t or/and a gap control with minimum vehicle gap no less than 40 m for the cable replacement of the case bridge.

Sucrose-Gap Apparatus를 이용한 말초신경계의 Opiate수용체 검색법

  • ;George B. Frank
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1992.05a
    • /
    • pp.40-40
    • /
    • 1992
  • opiate receptor들의 중추신경계에서의 분포 및 작용에 관한 실험물은 널리 알려져 있어 그 웅용 방법도 많이 있으나, 말초에 있는 opiate receptor의 존재 및 약물작용을 관찰하는 실험은 별로 알려진 것은 없다. 저자는 214mM의 sucrose 용역을 이용하여 전기적 자극에 따른 말초신경 및 말초조직(근육)에서의 opiate receptor애 대한 작용을 관찰하였다. 실험은 3분류의 약물을 이용하였다. 1) Pure agonists: morphine, meperidine, methadone, 2) Agonist-antagonist: buprenorphine 3) Pure antagonist: naloxone 위의 약물들을 이용하여 excitable cell membrane(좌골신경 및 근육)에서 일어나는 potential의 변화를 관찰하여 다음과 같은 결과를 얻었다. a. pure agonists들은 좌골신경 및 근육절편에서 action potentials을 의의있게 억제시켰으며 meperidine이 가장 강한 작용을 보였다. b. 이들의 작용은 naloxone 투여로 억제되었다. c. Agonist-antagonist인 buprenorphine은 투여용량 및 동시 투여한 pure agonist의 종류에 따라 biphasic pattern을 나타내었다. d. opiates 작용기전 및 약물작용장소를 알고자 두 종류, 즉 single 및 double technique을 사용하여 비교하였다.

  • PDF

Influence of the Recombination Parameters at the Si/SiO2 Interface on the Ideality of the Dark Current of High Efficiency Silicon Solar Cells

  • Kamal, Husain;Ghannam, Moustafa
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.232-242
    • /
    • 2015
  • Analytical study of surface recombination at the $Si/SiO_2$ interface is carried out in order to set the optimum surface conditions that result in minimum dark base current and maximum open circuit voltage in silicon solar cells. Recombination centers are assumed to form a continuum rather than to be at a single energy level in the energy gap. It is shown that the presence of a hump in the dark I-V characteristics of high efficiency PERL cells is due to the dark current transition from a high surface recombination regime at low voltage to a low surface recombination regime at high voltage. Successful fitting of reported dark I-V characteristics of a typical PERL cell is obtained with several possible combinations of surface parameters including equal electron and hole capture cross sections.