DOI QR코드

DOI QR Code

Low-threshold Photonic Crystal Lasers from InGaAsP Free-standing Slab Structures

  • Ryu, Han-Youl (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Kim, Se-Heom (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Kwon, Soon-Hong (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Park, Hong-Gyu (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Lee, Yong-Hee (Department of Physics, Korea Advanced Institute of Science and Technology)
  • Received : 2002.05.09
  • Published : 2002.09.01

Abstract

Photonic band gap structures have a high potential for nearly zero-threshold lasers. This paper describes new-types of low-threshold photonic crystal lasers fabricated in InGaAsP slab waveguides free-standing in air. Two-types of photonic crystal lasers are studied. One is a single-cell nano-cavity laser formed in a square array of air holes. This photonic band gap laser operates in the smallest possible whispering gallery mode with a theoretical Q >30000 and exhibits low threshold pump power of 0.8 mW at room temperature. The nther laser does not have any cavity structure and the lasing operation originates from the enhanced optical density of states near photonic band edges. A very low threshold of 35 $\mu$W (incident pump power) is achieved from this laser at 80 K, one of the lowest values ever reported. This low threshold is benefited from low optical losses as well as enhanced material gain at low temperature.

Keywords

References

  1. H. Yokoyama, Science 256, 66 (1992) https://doi.org/10.1126/science.256.5053.66
  2. R. E. Slusher, Opt. & Photon. News, Feb. 8 (1993) https://doi.org/10.1364/OPN.4.2.000008
  3. P. L. Gourley, Nature (London) 371, 571 (1994) https://doi.org/10.1038/371571a0
  4. R. M. De La Rue and C. Smith, Nature (London) 408, 653 (2000) https://doi.org/10.1038/35047196
  5. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, IEEE. J. Quantum Electron. 27, 1332 (1996) https://doi.org/10.1109/3.89950
  6. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992) https://doi.org/10.1063/1.106688
  7. T. Baba, IEEE J. Selected Topics in Quantum Electron. 3, 808 (1997) https://doi.org/10.1109/2944.640635
  8. E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993) https://doi.org/10.1364/JOSAB.10.000283
  9. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature (London) 386, 143 (1997) https://doi.org/10.1038/386143a0
  10. T. F. Krauss and R. M. D. L. Rue, Progress in Quantum Electron. 23, 51 (1999) https://doi.org/10.1016/S0079-6727(99)00004-X
  11. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987) https://doi.org/10.1103/PhysRevLett.58.2059
  12. P. R. Villeneuve, S. Fan, S. G. Johnson, and J.D. Joannopoulos, lEE Proc.-Optoelectron. 145, 384 (1998) https://doi.org/10.1049/ip-opt:19982467
  13. O. Painter, J. Vuckovi6, and A. Scherer, J. Opt. Soc.Am. B 16, 276 (1999) https://doi.org/10.1364/JOSAB.16.000275
  14. J. Vuckovi6, O. Painter, Y. Xu, A. Yariv, and A. Scherer, IEEE J. Quantum Electron. 35, 1168 (1999) https://doi.org/10.1109/3.777216
  15. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999) https://doi.org/10.1126/science.284.5421.1819
  16. O. J. Painter, A. Husain, A. Scherer, J. D. O'Brien, I. Kim, and P. D. Dapkus, J. Lightwave Technol. 17, 2082 (1999) https://doi.org/10.1109/50.802998
  17. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, Y. H. Lee, and D. H. Jang, Appl. Phys. Lett. 76, 2982 (2000) https://doi.org/10.1063/1.126552
  18. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. K. Park, D. H. Jang, and Y. H. Lee, IEEE Photon. Technol. Lett. 12, 129t) (2000) https://doi.org/10.1109/68.883808
  19. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, and J. S. Kim, Appl. Phys. Lett. 79, 3032 (2001) https://doi.org/10.1063/1.1416163
  20. H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, Appl. Phys. Lett. (to appear in May 2002)
  21. H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, Appl. Phys. Lett. (to appear in May 2002)
  22. Y. H. Lee and H. Y. Ryu, IEEE Circuits and Devices Magazine (to appear in May 2002)
  23. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, Appl. Phys. Lett. 75,316 (1999) https://doi.org/10.1063/1.124361
  24. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, Appl. Phys. Lett. 74, 7 (1999) https://doi.org/10.1063/1.123116
  25. M. Notomi, H. Suzuki, and T. Tamamura, Appl. Phys. Lett. 78, 1325 (2001) https://doi.org/10.1063/1.1352671
  26. A. Mekis, M. Meier, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos, Appl. Phys. A 69, 111 (1999) https://doi.org/10.1007/s003390050981
  27. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, Science 293, 1123 (2001) https://doi.org/10.1126/science.1061738
  28. N. Susa, J. Appl. Phys. 89, 815 (2001) https://doi.org/10.1063/1.1332806
  29. K. Sakoda, Opt. Express 4, 167 (1999) https://doi.org/10.1364/OE.4.000167
  30. K. Sakoda, K. Ohtaka, and T. Ueta, ibid 4, 481 (1999) https://doi.org/10.1364/OE.4.000481
  31. H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972) https://doi.org/10.1063/1.1661499
  32. S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999) https://doi.org/10.1103/PhysRevB.60.5751
  33. H. Y. Ryu, J. K. Hwang, and Y. H. Lee, J. Appl. Phys. 88,4941 (2000) https://doi.org/10.1063/1.1314300
  34. A. Taflove, Computational electrodynamics: The finite-difference time-domain method(Norwood, MA: Artech house, 1995)
  35. S. G. Johnson, S. Fan, A. Melds, and J. D. Joannopoulos, Appl. Phys. Lett. 18,3388 (2001) https://doi.org/10.1063/1.1375838
  36. J. D. Jackson, Classical Electrodynamics (New York: Wiley, 1999) vol. 3
  37. T. D. Lee, P. H. Cheng, J. S. Pan, R. S. Tsai, Y. Lai, and K. Tai, Appl. Phys. Lett. 12, 2223 (1998) https://doi.org/10.1063/1.121328
  38. S. Haroche and D. Kleppner, Phys. Today, Jan. 24 (1989) https://doi.org/10.1063/1.881201
  39. J. M. Gerard and B. Gayral, J. Lightwave Technol. 11,2089 (1999) https://doi.org/10.1109/50.802999
  40. A. Scherer, O. Painter, B. D'Urso, R. Lee, and A. Yariv, J. Vac. ScL Technol. B 16, 3906 (1997) https://doi.org/10.1116/1.590433
  41. H. Y. Ryu, Y. H. Lee, R. Sellin, and D. Bimberg, Appl. Phys. Lett 19, 3573 (2001) https://doi.org/10.1063/1.1420405
  42. A. Chutinan and S. Noda, Phys. Rev. B 62, 4488 (2000) https://doi.org/10.1103/PhysRevB.62.4488
  43. T. Ochiai and K. Sakoda, Phys. Rev. B 63, 125107 (2001) https://doi.org/10.1103/PhysRevB.63.125107
  44. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, Appl. Phys. Lett. 11, 2310 (2000) https://doi.org/10.1063/1.1310207
  45. H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, Appl. Phys. Lett. 16, 3519 (2000) https://doi.org/10.1063/1.126693
  46. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 63, 1310 (1993) https://doi.org/10.1063/1.109714
  47. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits, (New York, NJ: John Wiley & Sons, 1995)

Cited by

  1. A high-extraction-efficiency nanopatterned organic light-emitting diode vol.82, pp.21, 2003, https://doi.org/10.1063/1.1577823
  2. Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab vol.95, pp.2, 2004, https://doi.org/10.1063/1.1633645
  3. Slab-edge modes in two-dimensional photonic crystals vol.84, pp.16, 2004, https://doi.org/10.1063/1.1715145
  4. Active silicon-based two-dimensional slab photonic crystal structures based on erbium-doped hydrogenated amorphous silicon alloyed with carbon vol.83, pp.16, 2003, https://doi.org/10.1063/1.1620687
  5. Bandwidth Improvement for a Photonic Crystal Optical Y-splitter vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.283
  6. Modal Characteristics of Photonic Crystal Fibers vol.7, pp.3, 2003, https://doi.org/10.3807/JOSK.2003.7.3.188
  7. On-demand photonic crystal resonators vol.5, pp.4, 2011, https://doi.org/10.1002/lpor.201000017