GaN 단결정에 의해 제조된 Ga_2O_3 나노물질의 구조 The structure of Ga_2O_3 nanomaterials synthesized by the GaN single crystal <u>박상언</u>, 조채룡*, 김종필*, 정세영** (주) 컴텍스, *한국기초과학지원연구원, 부산분소, **부산대학교, 나노과학기술학부 (syjeong@pusan.ac.kr) The metallic oxide nanomaterials including ZnO, Ga_2O_3 , TiO_2 , and SnO_2 have been synthesized by a number of methods including laser ablation, arc discharge, thermal annealing procedure, catalytic growth processes, and vapor transport. We have been interested in preparing the nanomaterials of Ga_2O_3 , which is a wide band gap semiconductor (E_g =4.9 eV) and used as insulating oxide layer for all gallium-based semiconductor. Ga_2O_3 is stable at high temperature and a transparent oxide, which has potential application in optoelectronic devices. The Ga_2O_3 nanoparticles and nanobelts were produced using GaN single crystals, which were grown by flux method inside SUS^{TM} cell using a Na flux and exhibit plate-like morphologies with 4 ~ 5 mm in size. In these experiments, the conventional electric furnace was used. GaN single crystals were pulverized in form of powder for the growth of Ga_2O_3 nanomaterials. The structure, morphology and composition of the products were studied mainly by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM).