• Title/Summary/Keyword: Single Pile

Search Result 237, Processing Time 0.023 seconds

Behavior and Analysis of Laterally Loaded Model Pile in Nak-dong River Fine Sand

  • Kim, Young-Su;Seo
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.25-46
    • /
    • 1998
  • This paper shows that there are the results of a series of model tests on the behavior of single pipe pile which is subjected to lateral load in, Nak-dong River sand. The purpose of the present paper is to estimate the effect of Non-homogeneity. constraint condition of pile head, lateral load velocity, relative density, and embedded length of pile on the behavior of single pile. These effects can be quantified only by the results of model tests. Also, these are compared with the results of the numerical methods (p-y method, modified Vlasov method; new ${\gamma}$ parameter, Characteristic Load Method'CLM). In this study, a new ${\gamma}$ parameter equation based on the Vlasov method was developed to calculate the modulus of subgrade reaction (E. : nhz.) proportional to the depth. The p-y method of analysis is characterized by nonlinear behavior. and is an effective method of designing deep foundations subjected to lateral loads. The new method, which is called the characteristic load method (CLM). is simpler than p-y analysis. but its results closely approximates p-y analysis results. The method uses dimensional analysis to characterize the nonlinear behavior of laterally loaded piles with respect to be relationships among dimensionless variables. The modulus of subgrade reaction used in p-y analysis and modified Vlasov method obtained from back analysis using direct shear test (DST) results. The coefficients obtained from DST and the modified ones used for the prediction of lateral behavior of ultimate soil reaction range from 0.014 to 0.05. and from 0.2 to 0.4 respectively. It is shown that the predicted numerical results by the new method (CLM), p-y analysis, and modified Vlasov method (new parameter) agree well with measured results as the relative density increases. Also, the characteristic load method established applicability on the Q-Mnu. relationship below y/D=0.2.

  • PDF

Effects of Rice Hull Addition and Bin Wall Characteristics on Pig Slurry Composting Properties (왕겨 이용 방법과 옹벽이 돈분 퇴비화에 미치는 효과)

  • ;Craig, Ian P
    • Journal of Animal Environmental Science
    • /
    • v.10 no.1
    • /
    • pp.47-58
    • /
    • 2004
  • This work was carried out to investigate the effects of rice hull continuously utilized and/or replenished on the composting properties and to obtain the fundamental data between an unsupported wall and a soil supported wall during the period of composting with pig slurry in winter season. There were no the temperature holding effects in soil supported wall. New compost facility design for the temperature holding effects from a soil supported wall was required. The results were as follows; 1. Composting 1㎥ of pig slurry caused to save on 0.31㎥ of bulking agent in the unsupported wall in comparison with a soil supported wall in the rice hull single addition, and 0.45㎥ in the rice hull gradual addition. 2. The pile in the rice hull single addition had a high temperature in 4 days of composting indicating $71^{\circ}C$ and had a tendency in repeating periodically between $40^{\circ}C$ and $65^{\circ}C$ till 43 days of composting. And also the temperature of the pile was maintained between $48^{\circ}C$ and $28^{\circ}C$ after 50 days of composting. The pile of a rice hull gradual addition had the lower point of the temperature high increasingly according to adding up rice hull during the 35 days of composting. 3. The pH recorded in the rice hull single addition was higher(8.35∼10.02) compared to the rice hull gradual addition(8.6∼9.8). The pile of a rice hull single addition had a tendency in abruptly decreasing pH of the unsupported wall during the period of between 0.363$\textrm m^3$ and 0.537$\textrm m^3$ as a unit of pig slurry per rice hull. EC depending upon the way in adding rice hull was changed between 1.10 mS/$\textrm {cm}^3$ and 1.87 mS/$\textrm {cm}^3$. 4. The organic matter in an unsupported wall of the hull single addition was maintained the level of 55% during the period between 0.119㎥ and 0.363㎥ as a unit of pig slurry per rice hull while in the soil supported wall between 48 and 70. Water soluble C:N ratio was maintained between 1 and 2 in the rice hull single addition, while between 1 and 3 in the rice hull gradual addition. 5. Fertilizer constituents were detected higher level in the unsupported wall than in the soil supported wall in all treatments. This was dependant upon the input of pig slurry.

  • PDF

Development of Nonlinear Spring Modeling Technique of Group Suction Piles in Clay (점성토 지반에 근입된 그룹 석션파일에 대한 비선형 스프링 모델링 기법 개발)

  • Lee, Si-Hoon;Lee, Ju-Hyung;Tran, Xuan Nghiem;Kim, Sung-Ryul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Recently, several researches on the development of new economical anchor systems have been performed to support floating structures. This study focused on the group suction piles, which connect mid-sized suction piles instead of a single suction pile with large-diameter. The group suction pile shows the complex bearing behavior with translation and rotation, so it is difficult to apply conventional design methods. Therefore, the numerical modeling technique was developed to evaluate the horizontal bearing capacity of the group suction piles in clay. The technique models suction piles as beam elements and soil reaction as non-linear springs. To analyze the applicability of the modeling, the horizontal load-movement curves of the proposed modeling were compared with those of three-dimensional finite element analyses. The comparison showed that the modeling underestimates the capacity and overestimate the displacement corresponding to the maximum capacity. Therefore, the correction factors for the horizontal soil resistance was proposed to match the bearing capacity from the three-dimensional finite element analyses.

Target Reliability Indices of Static Design Methods for Driven Steel Pipe Piles in Korea (국내 항타강관말뚝 설계법의 목표 신뢰도지수)

  • Kwak, Kiseok;Huh, Jungwon;Kim, Kyung Jun;Park, Jae Hyun;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.19-29
    • /
    • 2008
  • As a part of study to develop LRFD (Load and Resistance Factor Design) codes for foundation structures in Korea, reliability analyses for driven steel pipe piles are performed and the target reliability indices are selected carefully. The 58 data sets of static load tests and soil property tests conducted in the whole domestic area were collected and analyzed to determine the representative bearing capacities of the piles. The static bearing capacity formula and the Meyerhof method using N values are applied to calculate the expected design bearing capacity of the piles. The resistance bias factors were evaluated for the two static design methods by comparing the representative bearing capacities with the design values. Reliability analysis was performed by two types of advanced methods: First Order Reliability Method (FORM), and Monte Carlo Simulation (MCS) method using resistance bias factor statistics. The static bearing capacity formula exhibited relatively small variation, whereas the Meyerhof method showed relatively high inherent conservatism in the resistance bias factors. Reliability indices for safety factors in the range of 3 to 5 were evaluated respectively as 1.50~2.89 and 1.61~2.72 for both of the static bearing capacity formula and the Meyerhof method. The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, based on the reliability level of the current design practice and considering redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure.

A SCENARIO STUDY ON MIXING STRATEGIES OF FAST REACTOR WITH LOW AND HIGH CONVERSION RATIOS

  • Jeong, Chang Joon;Jo, Chang Keun;Noh, Jae Man
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.367-376
    • /
    • 2013
  • This study investigated mixing scenarios of the low and high conversion ratios (CRs) of fast reactors (FRs). The fuel cycle was modeled so as to minimize the spent fuel (SF) or transuranics (TRU) inventories. The scenarios were modeled for a single low CR of 0.61 and a high CR of 1.0. The study also investigated the mixing scenario of low-high CR and/or high-low CR. The SF and TRU inventories, associated with different scenarios, were compared to those of the light water reactor (LWR) once-through (OT) case. Also, the important isotope concentration and long-term heat (LTH) load were calculated and compared to those of the OT cycle. As a result, it is known that the deployment of FRs of low CR burns more TRU and results in a reduction of the out-of-pile TRU inventory and LTH with low deployment capacity. This study shows that the mixing strategy of FRs of low and high CR can reduce the SF and TRU inventories with lower deployment capacity as compared with a single deployment of FRs of high CR.

Drag Coefficient Estimation of Pile Type Structures by Numerical Water Basin Experiments (수조 수치실험에 의한 말뚝구조물의 항력계수 산정)

  • Park, Il-Heum;Lee, Geun-Hyo;Cho, Young-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • A possibility of the drag coefficient estimation in numerical water basins was discussed where the numerical solution were calculated by the 3-dimensional hydro-dynamical model (FLOW-$3D^{(R)}$) with the RNG $k-{\varepsilon}$ turbulence model. On the known cases of the drag coefficients for a rectangle, the numerical drag coefficients got $1.34{\sim}1.52$ and the wind tunnel values were $1.3{\sim}1.5$. For a cylinder, the numerical values were calculated as $0.75{\sim}0.78$ in the range of 0.5

Stability Analysis and Reinforced Design Method of Excavation Slopes (굴착사면의 안정해석과 보강설계법)

  • 강예묵;이달원;조재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.140-154
    • /
    • 1996
  • In this study, displacement, deformation, and stability according to change of cohesion and internal friction angle were investigated through elasto-plastic method, finite-element method, and in-site experiment when excavating soft ground using sheet pile. The results of the study were as follows : 1. The horizontal displacement was 5.5% of the excavation depth by the elasto-plastic method and 3.9% of the excavation depth by the on-site experiment at the final excavation depth(GL-8.Om) on the condition of double stair strut after excavating GL-6.Om. 2. Relationships between cohesion(c) and internal friction angle $({\varphi})$ when safety factor to the penetration depth was 1.2 is shown in the following equations : (a) c= -O.0086$({\varphi})$+ O.3(D=3m) and (b) c=-0.00933$({\varphi})$+0.14(D=4m). 3. The results of elasto-plastic method and the experiment show that possible excavation depth was GL-6.Om after setting single stair strut in a short period in terms of possibility of carrying out on the condition of experimental site on the contrary general reinforcement method, setting double stair strut after excavating GL-4.0m. 4. After setting the strut, distribution of the horizontal displacement had concentrated on the excavation base and possible local failure which the shear strain caused decreased by the strut reinforced. 5. After setting strut, displacement of sheet pile was decreased by half, the limit of stable excavation depth of ground was GL-8.Om, and the maximum horizontal displacement at the GL-8.Om was 1.6% of excavation depth by the elasto-plastic method, 0.7% of excavation depth by the finite-element method.

  • PDF

Integrity test and depth estimation of deep foundations (깊은 기초의 건전도시험과 근입깊이 조사)

  • Jo Churl-hyun;Jung Hyun-key;Lee Tai-sup;Kim Hag-soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.202-216
    • /
    • 1999
  • The deep foundation is frequently used for the infrastructures. Since the quality control of the cast-in-place concrete foundations such as CIP piles and slurry walls is not so easy as that of the ready made PC(prestressed concrete) piles, it is necessary to get the information on the integrity of the concrete of the foundation. The depth estimation of foundations whose depths are unknown is also very important in repair and reinforcement works or in safety inspection and assessment to the big structures. The cross-hole sonic logging(CSL) system and the single channel reflection seismic measurement system were developed to test the integrity of pile. The former is well applied to CIP structures, while the later to all kinds of piles with less accurate result compared to that of CSL. To estimate the depth of the deep foundations, parallel seismics, borehole RADAR, and borehole magnetics can be used.

  • PDF

The Study on the Verification of the Blasting Effect of Blast Stemming Material and Plug Device (발파전색재료 및 플러그 장치의 발파효과 검증 연구)

  • Ko, Young-Hun
    • Tunnel and Underground Space
    • /
    • v.32 no.4
    • /
    • pp.272-284
    • /
    • 2022
  • This study conducted tunnel blasting to evaluate the blasting effect of a shear thickening fluid-based blasting stemming material and a sealed plug device under development. STF single stemming and STF stemming materials were combined with plugs to a tunnel blasting to which the SAV-Cut method was applied, and the advanced rate and fragmentation of tunnel blasting muck pile were compared when sand stemming was used. Tunnel advanced rate was evaluated using a 3D laser scanner. When the STF stemming material and STF stemming material with the plug were compared to the sand stemming material, it increased by 5.7 and 5.36%, respectively. As a result of evaluation of the fragmentation of tunnel blasting muck pile, it was the best when the STF stemming material was applied, and it decreased by about 61% compared to the case of sand stemming blasting. However, no significant improvement in blasting effect was observed with the application of plug devices.

Multiscale modeling of the anisotropic shock response of β-HMX molecular polycrystals

  • Zamiri, Amir R.;De, Suvranu
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.139-153
    • /
    • 2011
  • In this paper we develop a fully anisotropic pressure and temperature dependent model to investigate the effect of the microstructure on the shock response of ${\beta}$-HMX molecular single and polycrystals. This micromechanics-based model can account for crystal orientation as well as crystallographic twinning and slip during deformation and has been calibrated using existing gas gun data. We observe that due to the high degree of anisotropy of these polycrystals, certain orientations are more favorable for plastic deformation - and therefore defect and dislocation generation - than others. Loading along these directions results in highly localized deformation and temperature fields. This observation confirms that most of the temperature rise during high rates of loading is due to plastic deformation or dislocation pile up at microscale and not due to volumetric changes.