• Title/Summary/Keyword: Single Cell Protein

Search Result 491, Processing Time 0.023 seconds

Cloning, Sequencing, and Expression of the Gene Encoding a Multidomain Endo-$\beta$-1,4-Xylanase from Paenibacillus curdlanolyticus B-6, and Characterization of the Recombinant Enzyme

  • Waeonukul, Rattiya;Pason, Patthra;Kyu, Khin Lay;Sakka, Kazuo;Kosug, Akihiko;Mori, Yutaka;Ratanakhanokchai, Khanok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.277-285
    • /
    • 2009
  • The nucleotide sequence of the Paenibacillus curdlanolyticus B-6 xyn10A gene, encoding a xylanase Xyn10A, consists of 3,828 nucleotides encoding a protein of 1,276 amino acids with a predicted molecular mass of 142,726 Da. Sequence analysis indicated that Xyn10A is a multidomain enzyme comprising nine domains in the following order: three family 22 carbohydrate-binding modules (CBMs), a family 10 catalytic domain of glycosyl hydrolases (xylanase), a family 9 CBM, a glycine-rich region, and three surface layer homology (SLH) domains. Xyn10A was purified from a recombinant Escherichia coli by a single step of affinity purification on cellulose. It could effectively hydrolyze agricultural wastes and pure insoluble xylans, especially low substituted insoluble xylan. The hydrolysis products were a series of short-chain xylooligosaccharides, indicating that the purified enzyme was an endo-$\beta$-1,4-xylanase. Xyn10A bound to various insoluble polysaccharides including Avicel, $\alpha$-cellulose, insoluble birchwood and oat spelt xylans, chitin, and starches, and the cell wall fragments of P. curdlanolyticus B-6, indicating that both the CBM and the SLH domains are fully functioning in the Xyn10A. Removal of the CBMs from Xyn10A strongly reduced the ability of plant cell wall hydrolysis. These results suggested that the CBMs of Xyn10A play an important role in the hydrolysis of plant cell walls.

DEVELOPMENT OF ANIMAL CELL EXPRESSION SYSTEM WHICH CONFERS POSITION-INDEPENDENT AND ENHANCED FOREIGN GENE EXPRESSION

  • Yoon, Yeup;Kim, Jong-Mook;Kim, Jung-seob;Oh, Sun-Mo;Kim, Jong-Il;Yoon, Jae-Seung;Baek, Kwang-Hee
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.178-181
    • /
    • 2000
  • In order to develop the novel gene expression system, we introduced new control elements which could influence the foreign gene expression in animal cells. When the foreign genes are introduced into the genome of higher eukaryotic cells, the expressions from these integrated genes are often low and can vary greatly depending on the positions of the integration sites due to the complex nature of the chromatin structures (1). First we screened the various DNA sequence elements which can function as an insulator of gene expression from these position effects and can cooperate with the SV40 enhancer/promoter. Among the several DNA elements from the various sources, we identified the particular DNA element which confers the increased frequency of the positive colonies, assayed by the reporter gene from stable selections indicating significantly reduced position effects. This element also showed the several fold-increased expression level as well as the copy-number dependent expression with host cell specificity. Second we modified the transcription termination element where we introduced the specific terminator in combination with SV40 polyA signal. This modified terminator showed the increased efficiency and the level of the gene expression. By combining these two elements, we made the animal cell expression system and tested successfully for the recombinant protein productions of TGF ${\beta}$-soluble receptor, Antithrombin III, and single chain Pro-Urokinase. [Supported by grants from MOCIE]

  • PDF

Radio-Sensitization by Piper longumine of Human Breast Adenoma MDA-MB-231 Cells in Vitro

  • Yao, Jian-Xin;Yao, Zhi-Feng;Li, Zhan-Feng;Liu, Yong-Biao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3211-3217
    • /
    • 2014
  • Background: The current study investigated the effects of Piper longumine on radio-sensitization of human breast cancer MDA-MB-231 cells and underlying mechanisms. Materials and Methods: Human breast cancer MDA-MB-231 cells were cultured in vitro and those in logarithmic growth phase were selected for experiments divided into four groups: control, X-ray exposed, Piper longumine, and Piper longumine combined with X-rays. Conogenic assays were performed to determine the radio-sensitizing effects. Cell survival curves were fitted by single-hit multi-target model and then the survival fraction (SF), average lethal dose ($D_0$), quasi-threshold dose ($D_q$) and sensitive enhancement ratio (SER) were calculated. Cell apoptosis was analyzed by flow cytometry (FCM). Western blot assays were employed for expression of apoptosis-related proteins (Bc1-2 and Bax) after treatment with Piper longumine and/or X-ray radiation. The intracellular reactive oxygen species (ROS) level was detected by FCM with a DCFH-DA probe. Results: The cloning formation capacity was decreased in the group of piperlongumine plus radiation, which displayed the values of SF2, D0, Dq significantly lower than those of radiation alone group and the sensitive enhancement ratio (SER) of D0 was1.22 and 1.29, respectively. The cell apoptosis rate was increased by the combination treatment of Piper longumine and radiation. Piper longumine increased the radiation-induced intracellular levels of ROS. Compared with the control group and individual group, the combination group demonstrated significantly decreased expression of Bcl-2 with increased Bax. Conclusions: Piper longumine at a non-cytotoxic concentration can enhance the radio-sensitivity of MDA-MB-231cells, which may be related to its regulation of apoptosis-related protein expression and the increase of intracellular ROS level, thus increasing radiation-induced apoptosis.

Studies on Microbial Utilization of Agricultural Wastes (Part 8) Pilot Plant Operation for the Production of Cellulosic Single Cell Protein (농산폐자원의 미생물학적 이용에 관한 연구 (제8보) 섬유질단세포단상질 생산의 시험공장조업)

  • Ko, Young-Hee;Lee, Kye-Joon;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.3
    • /
    • pp.119-125
    • /
    • 1977
  • The cultivation of C. flavigena KIST 321, capable of utilizing cellulosic resources, was carried out in a 500 L fermentor by the batch process and the productivities of cellulosic SCP have been investigated by establishing the optimal conditions and levels of cellulosic material and others as medium components. The highest yield of the cell mass in the batch process was atttained under tile conditions at 30$^{\circ}C$, pH 7.4, 0.4∼0.6 VVM of aeration and at 130 rpm of agitation. According to the material balance of cellulosic SCP production using tile pretreated rice straw as a carbon source, more than 25 percent of rice straw on the base of drying weight was recovered in the form of cell mass.

  • PDF

Inhibitory effects of ginsenosides on basic fibroblast growth factor-induced melanocyte proliferation

  • Lee, Ji Eun;Park, Jong Il;Myung, Cheol Hwan;Hwang, Jae Sung
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.268-276
    • /
    • 2017
  • Background: UV-B-exposed keratinocytes secrete various paracrine factors. Among these factors, basic fibroblast growth factor (bFGF) stimulates the proliferation of melanocytes. Ginsenosides, the major active compounds of ginseng, are known to have broad pharmacological effects. In this study, we examined the antiproliferative effects of ginsenosides on bFGF-induced melanocyte proliferation. Methods: We investigated the inhibitory effects of Korean Red Ginseng and ginsenosides from Panax ginseng on bFGF-induced proliferation of melan-a melanocytes. Results: When melan-a melanocytes were treated with UV-B-irradiated SP-1 keratinocytes media, cell proliferation increased. This increased proliferation of melanocytes decreased with a neutralizing anti-bFGF antibody. To elucidate the effects of ginsenosides on melanocyte proliferation induced by bFGF, we tested 15 types of ginsenoside compounds. Among them, Rh3, Rh1, F1, and CK demonstrated antiproliferative effects on bFGF-induced melanocyte proliferation after 72 h of treatment. bFGF stimulated cell proliferation via extracellular signal-regulated kinase (ERK) activation in various cell types. Western blot analysis found bFGF-induced ERK phosphorylation in melan-a. Treatment with Rh3 inhibited bFGF-induced maximum ERK phosphorylation and F1-delayed maximum ERK phosphorylation, whereas Rh1 and CK had no detectable effects. In addition, cotreatment with Rh3 and F1 significantly suppressed bFGF-induced ERK phosphorylation. Western blot analysis found that bFGF increased microphthalmia-associated transcription factor (MITF) protein levels in melan-a. Treatment with Rh3 or F1 had no detectable effects, whereas cotreatment with Rh3 and F1 inhibited bFGF-induced MITF expression levels more strongly than a single treatment. Conclusion: In summary, we found that ginsenosides Rh3 and F1 have a synergistic antiproliferative effect on bFGF-induced melan-a melanocyte proliferation via the inhibition of ERK-mediated upregulation of MITF.

Store-operated calcium entry in the satellite glial cells of rat sympathetic ganglia

  • Sohyun Kim;Seong Jun Kang;Huu Son Nguyen;Seong-Woo Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.93-103
    • /
    • 2024
  • Satellite glial cells (SGCs), a major type of glial cell in the autonomic ganglia, closely envelop the cell body and even the synaptic regions of a single neuron with a very narrow gap. This structurally unique organization suggests that autonomic neurons and SGCs may communicate reciprocally. Glial Ca2+ signaling is critical for controlling neural activity. Here, for the first time we identified the machinery of store-operated Ca2+ entry (SOCE) which is critical for cellular Ca2+ homeostasis in rat sympathetic ganglia under normal and pathological states. Quantitative realtime PCR and immunostaining analyses showed that Orai1 and stromal interaction molecules 1 (STIM1) proteins are the primary components of SOCE machinery in the sympathetic ganglia. When the internal Ca2+ stores were depleted in the absence of extracellular Ca2+, the number of plasmalemmal Orai1 puncta was increased in neurons and SGCs, suggesting activation of the Ca2+ entry channels. Intracellular Ca2+ imaging revealed that SOCE was present in SGCs and neurons; however, the magnitude of SOCE was much larger in the SGCs than in the neurons. The SOCE was significantly suppressed by GSK7975A, a selective Orai1 blocker, and Pyr6, a SOCE blocker. Lipopolysaccharide (LPS) upregulated the glial fibrillary acidic protein and Toll-like receptor 4 in the sympathetic ganglia. Importantly, LPS attenuated SOCE via downregulating Orai1 and STIM1 expression. In conclusion, sympathetic SGCs functionally express the SOCE machinery, which is indispensable for intracellular Ca2+ signaling. The SOCE is highly susceptible to inflammation, which may affect sympathetic neuronal activity and thereby autonomic output.

Induction of c-Jun Expression by Breast Cancer Anti-estrogen Resistance-3 (BCAR3) in Human Breast MCF-12A Cells (정상적인 인간유방상피세포인 MCF-12세포에서 유방암 항에스토젠 내성인자-3 (BCAR3)에 의한 c-Jun 발현 유도 연구)

  • Oh, Myung-Ju;Kim, Ji-Hyun;Jhun, Byung Hak
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1383-1391
    • /
    • 2016
  • Anti-estrogen drugs such as tamoxifen have been used for treating patients with ER-positive, early breast cancer. However, resistance to anti-estrogen treatment is inevitable in most patients. Breast cancer anti-estrogen resistance-3 (BCAR3) has been identified as the protein responsible for the induction of tamoxifen resistance in estrogen-dependent human breast cancer. We have previously reported that BCAR3 regulates the cell cycle progression and the signaling pathway of EGF and insulin leading to DNA synthesis. In this study, we investigated the functional role of BCAR3 in regulating c-Jun transcription in non-tumorigenic human breast epithelial MCF-12A cells. A transient transfection of BCAR3 increased both the mRNA and protein of c-Jun expression, and stable expression of BCAR3 increased c-Jun protein expression. The overexpression of BCAR3 directly activated the promoter of c-jun, AP-1, and SRE but not that of $NF-{\kappa}B$. Furthermore, single-cell microinjection of BCAR3 expression plasmid in the cell cycle-arrested MCF-12A cells induced c-Jun protein expression, and co-injection of dominant negative mutants of Ras, Rac, and Rho suppressed the transcriptional activity of c-Jun in the presence of BCAR3. Furthermore, stable expression of BCAR3 increased the proliferation of MCF-12A cells. The microinjection of inhibitory materials such as anti-BCAR3 antibody and siRNA BCAR3 inhibited EGF-induced c-Jun expression but did not affect IGF-1 induced upregulation of c-Jun. Taken together, we propose that BCAR3 plays a crucial role in c-Jun protein expression and cell proliferation and that small GTPases (e.g., Ras, Rac, and Rho) are required for the BCAR3-mediated activation of c-Jun expression.

Development of Human Antibody Inhibiting RNase H Activity of Polymerase of Hepatitis B Virus Using Phage Display Technique (Phage Display 기법을 이용한 B형 간염 바이러스 Polymerase의 RNase H 활성을 억제하는 인간 단세포군 항체의 개발)

  • Lee, Seong-Rak;Song, Eun-Kyoung;Jeong, Young-Joo;Lee Young-Yi;Kim, Ik-Jung;Choi, In-Hak;Park, Sae-Gwang
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2004
  • Background: To develop a novel treatment strategy for hepatitis B virus infection, a major cause of liver chirosis and cancer, we aimed to make human monoclonal antibodies inhibiting RNase H activity of P protein playing in important role in HBV replication. In this regard, phage display technology was employed and demonstrated as an efficient cloning method for human monoclonal antibody. So this study analysed the usability of human monoclonal antibody as protein based gene therapy. Methods: RNase H of HBV was expressed as fusion protein with maltose binding protein and purified with amylose resin column. Single chain Fv (scFv) phage antibody library was constructed by PCR cloning using total RNAs of PBMC from 50 healthy volunteers. Binders to RNase H were selected with BIAcore 2000 from the constructed library, and purified as soluble antibody fragment. The affinity and sequences of selected antibody fragments were analyzed with BIAcore and ABI automatic sequencer, respectively. And finally RNase H activity inhibiting assay was carried out. Results: Recombinant RNase H expressed in E. coli exhibited an proper enzyme activity. Naive library of $4.46{\times}10^9cfu$ was screened by BIAcore 2000. Two clones, RN41 and RN56, showed affinity of $4.5{\times}10^{-7}M$ and $1.9{\times}10^{-7}M$, respectively. But RNase H inhibiting activity of RN41 was higher than that of RN56. Conclusion: We cloned human monoclonal antibodies inhibiting RNase H activity of P protein of HBV. These antibodies can be expected to be a good candidate for protein-based antiviral therapy by preventing a replication of HBV if they can be expressed intracellularly in HBV-infected hepatocytes.

Characterization of the Immunologically Active Components of Glycyrrhiza uralensis Prepared as Herbal Kimchi

  • Hwang, Jong-Hyun;Lee, Kyong-Haeng;Yu, Kwang-Won
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.29-35
    • /
    • 2003
  • A crude polysaccharide fraction (GU-3) from the roots of Glycyrrhiza uralensis (licorice root), a screened herbal plant used in the preparation of herbal kimchi, enhanced Peyer's patch mediated bone marrow cell proliferation and NK cell-mediated tumor cytotoxicity against Yac-1 cells. GU-3 was further purified by DEAE-Sepharose CL-6B yielding fractions designated as GU-3I, and 3IIa∼3IIe. GU-3IIa is mainly composed of arabinose, galactose and galacturonic acid, and showed the highest bone marrow cell proliferation activity. In addition, GU-3IIb had arabinose, galactose, rhamnose and galacturonic acid as the component sugars with a small quantity of protein; GU-3IIb also enhanced activity of NK cell-mediated tumor cytotoxicity. After these fractions were further fractionated via gel filtration on Sepharose CL-6B or Sephacryl S-300, two immunological active polysaccharides, GU-3IIa-2 and 3IIb-1 were purified from the respective fractions. GU-3IIa-2 mostly contained neutral sugars (75%) such as arabinose and galactose (molar ratio; 1.0 : 0.7) in addition to a considerable amount of galacturonic acid (20%), whereas GU-3IIb-1 was composed of arabinose, galactose, rhamnose and galacturonic acid (molar ratio; 0.3 : 0.5 : 0.1 : 1.0). Methylation analysis indicated that GU-3IIa-2 was composed mainly of terminal, 4- or 5-linked and 3,4- or 3,5-branched arabinose, 3-linked, 4-linked and 3,6-branched galactose, and terminal and 4-linked galacturonic acid whereas GU-3IIb-1 contained various glycosidic linkages such as terminal and 4- or 5-linked arabinose, 2,4-branched rhamnose, terminal and 4-linked galactose, and terminal and 4-galacturonic arid. Single radial gel diffusion indicated that only GU-3IIa-2 strongly reacted with β-D-glucosyl-Yariv antigen. These results suggest that bone marrow cell proliferating activity and enhancement of NK cell-mediated tumor cytotoxicity of GU-3 are caused by polysaccharides containing a pectic arabinogalactan (GU-3IIa-2) and pectic polysaccharide (GU-3IIb-1).

Walnut phenolic extracts reduce telomere length and telomerase activity in a colon cancer stem cell model

  • Shin, Phil-Kyung;Zoh, Yoonchae;Choi, Jina;Kim, Myung-Sunny;Kim, Yuri;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Telomeres are located at the chromosomal ends and progressively shortened during each cell cycle. Telomerase, which is regulated by hTERT and c-MYC, maintains telomeric DNA sequences. Especially, telomerase is active in cancer and stem cells to maintain telomere length for replicative immortality. Recently we reported that walnut phenolic extract (WPE) can reduce cell viability in a colon cancer stem cell (CSC) model. We, therefore, investigated the effect of WPE on telomere maintenance in the same model. MATERIALS AND METHODS: $CD133^+CD44^+$ cells from HCT116, a human colon cancer cell line, were sorted by Fluorescence-activated cell sorting (FACS) and treated with WPE at the concentrations of 0, 10, 20, and $40{\mu}g/mL$ for 6 days. Telomere lengths were assessed by quantitative real-time PCR (qRT-PCR) using telomere specific primers and DNA extracted from the cells, which was further adjusted with single-copy gene and reference DNA ($ddC_t$). Telomerase activity was also measured by qRT-PCR after incubating the PCR mixture with cell protein extracts, which was adjusted with reference DNA ($dC_t$). Transcriptions of hTERT and c-MYC were determined using conventional RT-PCR. RESULTS: Telomere length of WPE-treated cells was significantly decreased in a dose-dependent manner ($5.16{\pm}0.13$ at $0{\mu}g/mL$, $4.79{\pm}0.12$ at $10{\mu}g/mL$, $3.24{\pm}0.08$ at $20{\mu}g/mL$ and $3.99{\pm}0.09$ at $40{\mu}g/mL$; P = 0.0276). Telomerase activities concurrently decreased with telomere length ($1.47{\pm}0.04$, $1.09{\pm}0.01$, $0.76{\pm}0.08$, and $0.88{\pm}0.06$; P = 0.0067). There was a positive correlation between telomere length and telomerase activity (r = 0.9090; P < 0.0001). Transcriptions of both hTERT and c-MYC were also significantly decreased in the same manner. CONCLUSION: In the present cell culture model, WPE reduced telomere maintenance, which may provide a mechanistic link to the effect of walnuts on the viability of colon CSCs.