• Title/Summary/Keyword: Single/two-phase flow

Search Result 224, Processing Time 0.032 seconds

Experimental Study on Gas-Water Fracture Relative Permeability Measurement in a Single-Fractured Parallel Plate Model (단일 균열 평판 모델에서 가스-물 균열 상대투과도 측정에 관한 실험적 연구)

  • 이원석;성원모;한일영
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.221-226
    • /
    • 2000
  • In this study, the characteristics of gas-water relative permeability curves in a single fractured-plate according to the various aperture size were analyzed by using the Hele-Shaw type glass plate model. The plate was made of glasses for the observation of the two-phase flow pattern, and seven cases were set up based on the aperture size in the range of field scale from 30 to $120\mum$. The experiment was conducted by steady-state method, and the water saturation was determined more accurately by the developed digital image process technique. The empirical equations of relative permeability to gas and water for single fractured-plate were correlated by using the aperture size which directly affects the two-phase flow pattern and critical saturation.

  • PDF

Analysis of Characteristics on Small Air-Conditioning Type Evaporator (소형 공조용 증발기의 특성 해석)

  • 김재돌;윤정인;김영수;문춘근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.573-580
    • /
    • 2001
  • When investigating optimum design of the evaporator in the refrigeration and heat pump systems, there is still lack of data for the dynamic characteristics of the evaporator, This is due to the fact that the static characteristics in the evaporator are absolutely difficult to measure and are burdened with uncertainties. In this study, the simulation works for static characteristics in the evaporator of small air conditioner are carried out to obtain the data of dynamic characteristics. In the simulation, the test evaporator is divided by two-phase evaporating region and single-phase heating region. The major parameters are refrigerant flow rate, heat transfer coefficient of air, air velocity and air temperature. The results show that the calculation method for tube length is an easy-to-use to model analysis of static characteristics and to determine state of refrigerant in the evaporator. The effects of the four parameters on the length of evaporating completed point and heat flow rate to the evaporator are clarified.

  • PDF

Image processing method of two-phase bubbly flow using ellipse fitting algorithm (최적 타원 생성 알고리즘 기반 2상 기포 유동 영상 처리 기법)

  • Myeong, Jaewon;Cho, Seolhee;Lee, Woonghee;Kim, Sungho;Park, Youngchul;Shin, Weon Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.28-35
    • /
    • 2021
  • In this study, an image processing method for the measurement of two-phase bubbly flow is developed. Shadowgraphy images obtained by high-speed camera are used for analysis. Some bubbles are generated as single unit and others are overlapped or clustered. Single bubbles can be easily analyzed using parameters such as bubble shape, centroid, and area. But overlapped bubbles are difficult to transform clustered bubbles into segmented bubbles. Several approaches were proposed for the bubble segmentation such as Hough transform, connection point method and watershed. These methods are not enough for bubble segmentation. In order to obtain the size distribution of bubbles, we present a method of splitting overlapping bubbles using watershed and approximating them to ellipse. There is only 5% error difference between manual and automatic analysis. Furthermore, the error can be reduced down to 1.2% when a correction factor is used. The ellipse fitting algorithm developed in this study can be used to measure bubble parameters accurately by reflecting the shape of the bubbles.

Preliminary numerical study of single bubble dynamics in swirl flow using volume of fluid method

  • Li, Zhongchun;Qiu, Zhifang;Du, Sijia;Ding, Shuhua;Bao, Hui;Song, Xiaoming;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1119-1126
    • /
    • 2021
  • Spacer grid with mixing vane had been widely used in nuclear reactor core. One of the main feather of spacer grid with mixing vane was that strong swirl flow was formed after the spacer grid. The swirl flow not only changed the bubble generation in the near wall field, but also affected the bubble behaviors in the center region of the subchannel. The interaction between bubble and the swirl flow was one of the basic phenomena for the two phase flow modeling in fuel assembly. To obatin better understanding on the bubble behaviors in swirl flow, full three dimension numerical simulations were conducted in the present paper. The swirl flow was assumed in the cylindral calculation domain. The bubble interface was captured by Volume Of Fluid (VOF) method. The properties of saturated water and steam at different pressure were applied in the simulation. The bubble trajectory, motion, shape and force were obtained based on the bubble parameters captured by VOF. The simulation cases in the present study included single bubble with different size, at different angular velocity conditions and at different pressure conditions. The results indicated that bubble migrated to the center in swirl flow with spiral motion type. The lateral migration was mainly related to shear stress magnitude and bubble size. The bubble moved toward the center with high velocity when the swirl magnitude was high. The largest bubble had the highest lateral migration velocity in the present study range. The effect of pressure was small when bubble size was the same. The prelimenery simulation result would be beneficial for better understanding complex two phase flow phenomena in fuel assembly with spacer grid.

The nonlinear fuzzy intelligent theory for high-bypass-ratio two-spool unmixed-flow jet engines

  • C.C. Hung;T. Nguyen
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.4
    • /
    • pp.369-391
    • /
    • 2023
  • In our research we have offered a solid solution for aeronautical analysis. which can guarantee the asymptotic stability of coupled nonlinear facilities. According to the theoretical solutions and methods presented, the engine of this aircraft is a small high-bypass turbofan engine. using the non-linear aero-motor control approach and this paper focuses on the power management function of the aero-motor control system. These include static controls and transient controls. A mathematical model of the high-bypass-ratio two-spool unmixed-flow aeroengine was developed through a set of nonlinear dynamic equations verified by experimental data. A single actuator using the displacement method is designed to maintain a certain level of thrust under steady-state conditions. and maintains repeatable performance during transient operation from the requested thrust phase to the next. A single controller can compensate for the effects of noise and harmonic noise at many performance points. And the dynamic performance of a single controller is satisfactory during the transient. for fairness Numerical and computer experiments are described in the perfection of the methods we offer in research.

Deformation Behaviour of Ti-8Ta-3Nb During Hot Forging

  • Lee Kyung Won;Ban Jae Sam;Kim Sun Jin;Cho Kyu Zong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.13-18
    • /
    • 2006
  • Ti-8Ta-3Nb, as a new biomaterial, was prepared by cast and swaging process. Their deformation behavior of Ti-8Ta-3Nb alloy has been characterized on the basis of its flow stress variation obtained from the true strain rate compression testing in the temperature of $700-900^{\circ}C$ and strain rate of $0.001-10\;s^{-1}$. At the strain rates lower than $0.1\;s^{-1}$ and the all temperature ranges which consist of two phase ${\alpha}+{\beta}$ as well as single ${\beta}$ phase fields, the flow curves show a small degree of flow softening behavior. In contrast, the shapes of the flow curves at other strain rates indicate unstable behavior. The shapes of the flow curves were similar in both as-cast and swaged specimen as well as in both ${\alpha}+{\beta}$ phase and ${\beta}$ phase. The flow stress data did not obey the kinetic rate equation over the entire regime of testing but a good fit has been obtained in the intermediate range of temperatures ($750-850^{\circ}C$). In this range, a stress exponent value of about 7.7 in as-cast specimens and about 6.2 in swaged specimens with an apparent activation energy of about 300 kJ/mol and about 206 kJ/mol respectively have been evaluated.

Post Test Analysis to Natural Circulation Experiment on the BETHSY Facility Using the MARS 1.4 Code

  • Chung, Young-Jong;Kim, Hee-Cheol;Chang, Moon-Hee
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.638-651
    • /
    • 2001
  • The present study is to assess the applicability of the best-estimate thermal-hydraulic code, MARS 1.4, for the analysis of thermal-hydraulic behavior in PWRs during natural circulation conditions. The code simulates a natural circulation test, BETHSY test 4. la, which was conducted on the integral test facility of BETHSY. The test represented the cooling states of the primary cooling system under single-phase natural circulation, two-phase natural circulation and the reflux condensation mode with conditions corresponding to the residual power, 2% of the rated core power value and 6.8 MPa at the secondary system. Based on MARS 1.4 calculations, the major thermal-hydraulic behaviors during natural circulation are evaluated and the differences between the experimental data and calculated results are identified. The calculated results show generally good behavior with regard to the experimental results; the region of single-phase natural circulation is 100-92% of the initial mass inventory, two-phase natural circulation is 84-63 %, and the reflux condensation mode occurred below 58 %. U-tubes empty and the core uncovery are obtained at 39 % and 34 % of the initial mass inventory, respectively.

  • PDF

ASSESSMENT OF THE CUPIDCODE APPLICABILITY TO SUBCHANNEL FLOW IN 2×2 ROD BUNDLE (CUPID 코드를 활용한 2×2 봉다발 부수로 유동 해석)

  • Lee, J.R.;Park, I.K.;Kim, J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.71-77
    • /
    • 2016
  • The CUPID code is a transient, three-dimensional, two-fluid, thermal-hydraulic code designed for a component-scale analysis of nuclear reactor components. The primary objective of this study is to assess the applicability of CUPID to single-phase turbulent flow analyses of $2{\times}2$ rod bundle subchannel. The bulk velocity at the inlet varies from 1.0 m/s up to 2.0 m/s which is equivalent to the fully turbulent flow with the range of Re=12,500 to 25,000. Adiabatic single-phase flow is assumed. The velocity profile at the exit region is quantitatively compared with both experimental measurement and commercial CFD tool. Three different boundary conditions are simulated and quantitatively compared each other. The calculation results of CUPID code shows a good agreement with the experimental data. It is concluded that the CUPID code has capability to reproduce the turbulent flow behavior for the $2{\times}2$ rod bundle geometry.

Flow Characteristics of Cryogenic Oxidizer in Liquid Propellant Rocket Engine (액체로켓 엔진에서의 극저온 산화제의 유동 특성)

  • 조남경;정용갑;문일윤;한영민;이수용;정상권
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.15-23
    • /
    • 2002
  • In most cryogenic liquid rocket engines, liquid oxygen manifold and injector are not thermally insulated from room temperature environment fur reducing system complexity and the weight. This feature of cryogenic liquid rocket engine results in the situation that cryogenic liquid oxygen flow is easy to be vaporized especially in the vicinity of the manifold and the injector wall. The research in this paper is focused on two-phase flow phenomena of liquid oxygen in rocket engine. Vapor fraction was estimated by comparing the measured two-phase flow pressure drop in engine manifold and the injector with ideal single phase pressure drop. Heat flux into cryogenic flow is estimated by measuring the wall temperature on the engine manifold to examine boiling characteristics. Suitable correlations for cryogenic two-phase flow were also reviewed to see their applicability. In addition, the effect of vapor generation in liquid rocket engine manifold and injector on engine performance and stability was considered.

On the Measurement Technique of Void Fraction by Single Camera Two Phase PIV (단일 카메라 입자영상유속계를 이용한 이상유동 기포율 측정방법)

  • Choi, Dong-Whan;Sung, Jae-Yong;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1558-1563
    • /
    • 2004
  • A measurement technique for the void fraction and the bubble dynamics in gas-liquid two-phase flows has been proposed using a time-resolved two-phase PIV system. For the three-dimensional evaluation of the bubble information, both the images from the front and side views are simultaneously recorded into a high speed CCD camera by reflecting the side image into the front view with the help of a $45^{\circ}$ oriented mirror. Then, a stereo-matching technique is applied to calculate the void fraction, bubble size and shape. To obtain the rising bubble velocities, the 2-frame PTV method was applied. Consequently, the present technique shows good feasibility for the measurements of the volume fractions, mean diameters, aspect ratios and velocities of the bubbles at the three-dimensional point of view.

  • PDF