• Title/Summary/Keyword: Simultaneous optimization

Search Result 262, Processing Time 0.03 seconds

A Study on Improved Optimization Method for Modeling High Resistivity SOI RF CMOS Symmetric Inductor (High Resistivity SOI RF CMOS 대칭형 인덕터 모델링을 위한 개선된 Optimization 방법 연구)

  • Ahn, Jahyun;Lee, Seonghearn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.21-27
    • /
    • 2015
  • An improved method based on direct extraction and simultaneous optimization is developed to determine model parameters of symmetric inductors fabricated by the high resistivity(HR) silicon-on-insulator(SOI) RF CMOS process. In order to improve modeling accuracy, several model parameters are directly extracted by Y and Z-parameter equations derived from two equivalent circuits of symmetric inductor and grounded center-tap one, and the number of unknown parameters is reduced using parallel resistance and total inductance equations. In order to improve optimization accuracy, two sets of measured S-parameters are simultaneously optimized while same model parameters in two equivalent circuits are set to common variables.

Optimization of Parameters for Simultaneous Multielemental Analysis by Atomic Absorption Spectrometry (원자흡수분광법에 의한 다원소 동시분석시 조건의 최적화)

  • Kim, Hyo Jin;Kang, Jong Seong
    • Analytical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.359-362
    • /
    • 1993
  • To find compromise experimental conditions that will allow a group of elements to be run on flame atomic absorption spectrometer without changing the burner height or gas flow rates, measurements were carried out. The optimum absorbance for simultaneous analysis of ten elements was observed at high flow rate of air-$C_2H_2$ as fuel and at 2mm of burner height. At the condition, 73% of mean relative absorbance were achieved.

  • PDF

Simultaneous Control of Frequency Fluctuation and Battery SOC in a Smart Grid using LFC and EV Controllers based on Optimal MIMO-MPC

  • Pahasa, Jonglak;Ngamroo, Issarachai
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.601-611
    • /
    • 2017
  • This paper proposes a simultaneous control of frequency deviation and electric vehicles (EVs) battery state of charge (SOC) using load frequency control (LFC) and EV controllers. In order to provide both frequency stabilization and SOC schedule near optimal performance within the whole operating regions, a multiple-input multiple-output model predictive control (MIMO-MPC) is employed for the coordination of LFC and EV controllers. The MIMO-MPC is an effective model-based prediction which calculates future control signals by an optimization of quadratic programming based on the plant model, past manipulate, measured disturbance, and control signals. By optimizing the input and output weights of the MIMO-MPC using particle swarm optimization (PSO), the optimal MIMO-MPC for simultaneous control of the LFC and EVs, is able to stabilize the frequency fluctuation and maintain the desired battery SOC at the certain time, effectively. Simulation study in a two-area interconnected power system with wind farms shows the effectiveness of the proposed MIMO-MPC over the proportional integral (PI) controller and the decentralized vehicle to grid control (DVC) controller.

Optimization of stacking sequence for composite golf club shafts (복합재료 골프샤프트의 적층최적화)

  • Kim, Moo-Sun;Han, Dong-Chul;Kim, Seon-Jin;Lee, Woo-Il
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • This study presents a methodology for optimization of static characteristics of golf club shafts. Stacking sequence for the optimal composite shaft performance is searched. A new objective function is defined for the simultaneous optimization of flexural and torsional stiffnesses. Classical lamination theory is used for the static analysis. As the optimization tool, genetic algorithm is applied with the stacking sequence as design. variables. With the optimal stacking sequence, dynamic characteristics of the shaft is also studied.

Redundancy Optimization under Multiple Constraints (다제약식하에서의 최적중복설계에 관한 연구)

  • Yun Deok-Gyun
    • Journal of the military operations research society of Korea
    • /
    • v.11 no.2
    • /
    • pp.53-63
    • /
    • 1985
  • This paper presents a multi-costraint optimization model for redundant system reliability. The optimization model is usually formulated as a nonlinear integer programming (NIP) problem. This paper reformulates the NIP problem into a linear integer programming (LIP) problem. Then an efficient 'Branch and Straddle' algorithm is proposed to solve the LIP problem. The efficiency of this algorithm stems from the simultaneous handling of multiple variables, unlike in ordinary branch and bound algorithms. A numerical example is given to illustrate this algorithm.

  • PDF

Multiresponse Optimization: A Literature Review and Research Opportunities (다중반응표면최적화: 현황평가 및 추후 연구방향)

  • Jeong, In-Jun;Kim, Gwang-Jae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.730-739
    • /
    • 2005
  • A common problem encountered in product or process design is the selection of optimal parameter levels which involve simultaneous consideration of multiresponse variables. A multiresponse problem is solved through three major stages: data collection, model building, and optimization. To date, various methods have been proposed for the optimization stage, including the desirability function approach and loss function approach. In this paper, we first propose a framework classifying the existing studies and then propose some promising directions for future research.

  • PDF

Evaluation of a moving bed biofilm reactor for simultaneous atrazine, carbon and nutrients removal from aquatic environments: Modeling and optimization

  • Derakhshan, Zahra;Ehrampoush, Mohammad Hassan;Mahvi, Amir Hossein;Dehghani, Mansooreh;Faramarzian, Mohammad;Ghaneian, Mohammad Taghi;Mokhtari, Mehdi;Ebrahimi, Ali Asghar;Fallahzadeh, Hossein
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.219-230
    • /
    • 2018
  • The present study examined a moving bed biofilm reactor (MBBR) bioreactor on a laboratory scale for simultaneous removal of atrazine, organic carbon, and nutrients from wastewater. The maximum removal efficiency of atrazine, chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN) were 83.57%, 90.36%, 90.74% and 87.93 respectively. Increasing salinity up to 40 g/L NaCl in influent flow could inhibit atrazine biodegradation process strongly in the MBBR reactor.Results showed that MBBR is so suitable process for efficiently biodegrading of atrazine and nitrogen removal process was based on the simultaneous nitrification-denitrification (SND) process.

An Optimization Technique for Diesel Engine Combustion Using a Micro Genetic Algorithm (유전알고리즘을 이용한 디젤엔진의 연소최적화 기법에 대한 연구)

  • 김동광;조남효;차순창;조순호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.51-58
    • /
    • 2004
  • Optimization of engine desist and operation parameters using a genetic algorithm was demonstrated for direct injection diesel engine combustion. A micro genetic algorithm and a modified KIVA-3V code were used for the analysis and optimization of the engine combustion. At each generation of the optimization step the micro genetic algorithm generated five groups of parameter sets, and the five cases of KIVA-3V analysis were to be performed either in series or in parallel. The micro genetic algorithm code was also parallelized by using MPI programming, and a multi-CPU parallel supercomputer was used to speed up the optimization process by four times. An example case for a fixed engine speed was performed with six parameters of intake swirl ratio, compression ratio, fuel injection included angle, injector hole number, SOI, and injection duration. A simultaneous optimization technique for the whole range of engine speeds would be suggested for further studies.

A Study on Multiobjective Genetic Optimization Using Co-Evolutionary Strategy (공진화전략에 의한 다중목적 유전알고리즘 최적화기법에 관한 연구)

  • Kim, Do-Young;Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.699-704
    • /
    • 2000
  • The present paper deals with a multiobjective optimization method based on the co-evolutionary genetic strategy. The co-evolutionary strategy carries out the multiobjective optimization in such way that it optimizes individual objective function as compared with each generation's value while there are more than two genetic evolutions at the same time. In this study, the designs that are out of the given constraint map compared with other objective function value are excepted by the penalty. The proposed multiobjective genetic algorithms are distinguished from other optimization methods because it seeks for the optimized value through the simultaneous search without the help of the single-objective values which have to be obtained in advance of the multiobjective designs. The proposed strategy easily applied to well-developed genetic algorithms since it doesn't need any further formulation for the multiobjective optimization. The paper describes the co-evolutionary strategy and compares design results on the simple structural optimization problem.

  • PDF

Optimal Planning of Multiple Routes in Flexible Manufacturing System (유연생산 시스템의 최적 복수 경로 계획)

  • Kim Jeongseob
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.4
    • /
    • pp.175-187
    • /
    • 2004
  • We consider the simultaneous selection of part routes for multiple part types in Flexible Manufacturing Systems (FMSs). Using an optimization framework we investigate two alternative route assignment policies. The one, called routing mix policy in the literature, specifies the optimal proportion of each part type to be produced along its alternative routes, assuming that the proportions can be kept during execution. The other one, which we propose and call pallet allocation policy, partitions the pallets assigned to each part type among the routes. The optimization framework used is a nonlinear programming superimposed on a closed queueing network model of an FMS which produces multiple part types with distinct repeated visits to certain workstations. The objective is to maximize the weighted throughput. Our study shows that the simultaneous use of multiple routes leads to reduced bottleneck utilization, improved workload balance, and a significant increase in the FMS's weighted throughput, without any additional capital investments. Based on numerical work, we also conjecture that pallet allocation policy is more robust than routing mix policy, operationally easier to implement, and may yield higher revenues.