• 제목/요약/키워드: Simultaneous localization and mapping algorithm

검색결과 52건 처리시간 0.021초

Onboard dynamic RGB-D simultaneous localization and mapping for mobile robot navigation

  • Canovas, Bruce;Negre, Amaury;Rombaut, Michele
    • ETRI Journal
    • /
    • 제43권4호
    • /
    • pp.617-629
    • /
    • 2021
  • Although the actual visual simultaneous localization and mapping (SLAM) algorithms provide highly accurate tracking and mapping, most algorithms are too heavy to run live on embedded devices. In addition, the maps they produce are often unsuitable for path planning. To mitigate these issues, we propose a completely closed-loop online dense RGB-D SLAM algorithm targeting autonomous indoor mobile robot navigation tasks. The proposed algorithm runs live on an NVIDIA Jetson board embedded on a two-wheel differential-drive robot. It exhibits lightweight three-dimensional mapping, room-scale consistency, accurate pose tracking, and robustness to moving objects. Further, we introduce a navigation strategy based on the proposed algorithm. Experimental results demonstrate the robustness of the proposed SLAM algorithm, its computational efficiency, and its benefits for on-the-fly navigation while mapping.

Unmanned Aerial Vehicle Recovery Using a Simultaneous Localization and Mapping Algorithm without the Aid of Global Positioning System

  • Lee, Chang-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권2호
    • /
    • pp.98-109
    • /
    • 2010
  • This paper deals with a new method of unmanned aerial vehicle (UAV) recovery when a UAV fails to get a global positioning system (GPS) signal at an unprepared site. The proposed method is based on the simultaneous localization and mapping (SLAM) algorithm. It is a process by which a vehicle can build a map of an unknown environment and simultaneously use this map to determine its position. Extensive research on SLAM algorithms proves that the error in the map reaches a lower limit, which is a function of the error that existed when the first observation was made. For this reason, the proposed method can help an inertial navigation system to prevent its error of divergence with regard to the vehicle position. In other words, it is possible that a UAV can navigate with reasonable positional accuracy in an unknown environment without the aid of GPS. This is the main idea of the present paper. Especially, this paper focuses on path planning that maximizes the discussed ability of a SLAM algorithm. In this work, a SLAM algorithm based on extended Kalman filter is used. For simplicity's sake, a blimp-type of UAV model is discussed and three-dimensional pointed-shape landmarks are considered. Finally, the proposed method is evaluated by a number of simulations.

다중 카메라 시스템을 위한 전방위 Visual-LiDAR SLAM (Omni-directional Visual-LiDAR SLAM for Multi-Camera System)

  • 지샨 자비드;김곤우
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.353-358
    • /
    • 2022
  • Due to the limited field of view of the pinhole camera, there is a lack of stability and accuracy in camera pose estimation applications such as visual SLAM. Nowadays, multiple-camera setups and large field of cameras are used to solve such issues. However, a multiple-camera system increases the computation complexity of the algorithm. Therefore, in multiple camera-assisted visual simultaneous localization and mapping (vSLAM) the multi-view tracking algorithm is proposed that can be used to balance the budget of the features in tracking and local mapping. The proposed algorithm is based on PanoSLAM architecture with a panoramic camera model. To avoid the scale issue 3D LiDAR is fused with omnidirectional camera setup. The depth is directly estimated from 3D LiDAR and the remaining features are triangulated from pose information. To validate the method, we collected a dataset from the outdoor environment and performed extensive experiments. The accuracy was measured by the absolute trajectory error which shows comparable robustness in various environments.

적합도 공유 기법을 적용한 향상된 FastSLAM 알고리즘 (An Improved FastSLAM Algorithm using Fitness Sharing Technique)

  • 권오성;현병용;서기성
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.487-493
    • /
    • 2012
  • SLAM(Simultaneous Localization And Mapping)은 주변 환경에 대한 지도 작성과 자신의 위치를 인식하는 기법으로 주행 로봇 분야에서 널리 사용되고 있다. FastSLAM(A Factored Solution to the SLAM)은 파티클 필터와 확장형 칼만 필터를 기반으로 한 대표적인 SLAM 기법중의 하나이나, 재추출 단계에서 입자들의 다양성이 상실되는 문제가 제기되고 있다. 본 논문에서는 적합도 공유기법을 사용하여 입자들의 다양성 상실에 관한 문제를 보완하는 방법을 제시하고, 기존의 기법들과 성능을 비교 및 분석한다.

Unscented Kalman Filter을 이용한 Simultaneous Localization and Mapping 기법 적용 (A Simulation for Robust SLAM to the Error of Heading in Towing Tank)

  • 황아롬;성우제
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.339-346
    • /
    • 2006
  • Increased usage of autonomous underwater vehicle (AUV) has led to the development of alternative navigational methods that do not employ the acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small AUV. The SLAM is one of such alternative navigation methods for measuring the environment that the vehicle is passing through and providing relative position of AUV by processing the data from sonar measurements. A technique for SLAM algorithm which uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the AUV and objects. In order for the algorithm to work efficiently, the nearest neighbor standard filter is introduced as the algorithm of data association in the SLAM for associating the stored targets the sonar returns at each time step. The proposed SLAM algorithm is tested by simulations under various conditions. The results of the simulation show that the proposed SLAM algorithm is capable of estimating the position of the AUV and the object and demonstrates that the algorithm will perform well in various environments.

  • PDF

실내 환경에서 자기위치 인식을 위한 어안렌즈 기반의 천장의 특징점 모델 연구 (A Study on Fisheye Lens based Features on the Ceiling for Self-Localization)

  • 최철희;최병재
    • 한국지능시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.442-448
    • /
    • 2011
  • 이동 로봇의 위치인식 기술을 위하여 SLAM(Simultaneous Localization and Mapping)에 관한 많은 연구가 진행되고 있다. 본 논문에서는 시야각이 넓은 어안렌즈를 장착한 단일 카메라를 사용하여 천장의 특징점을 이용한 자기위치 인식에 관한 방안을 제시한다. 여기서는 어안렌즈 기반의 비전 시스템이 가지는 왜곡 영상의 보정, SIFT(Scale Invariant Feature Transform) 기반의 강인한 특징점을 추출하여 이전 영상과 이동한 영상과의 정합을 통해 최적화된 영역 함수를 도출하는 과정, 그리고 기하학적 적합모델 설계 등을 제시한다. 제안한 방법을 실험실 환경 및 복도 환경에 적용하여 그 유용성을 확인한다.

Map Building and Localization Based on Wave Algorithm and Kalman Filter

  • Saitov, Dilshat;Choi, Jeong Won;Park, Ju Hyun;Lee, Suk Gyu
    • 대한임베디드공학회논문지
    • /
    • 제3권2호
    • /
    • pp.102-108
    • /
    • 2008
  • This paper describes a mapping and localization based on wave algorithm[11] and Kalman filter for effective SLAM. Each robot in a multi robot system has its own task such as building a map for its local position. By combining their data into a shared map, the robot scans actively seek to verify their relative locations. For simultaneous localization the algorithm which is well known as Kalman Filter (KF) is used. For modelling the robot position we wish to know three parameters (x, y coordinates and its orientation) which can be combined into a vector called a state variable vector. The Kalman Filter is a smart way to integrate measurement data into an estimate by recognizing that measurements are noisy and that sometimes they should ignored or have only a small effect on the state estimate. In addition to an estimate of the state variable vector, the algorithm provides an estimate of the state variable vector uncertainty i.e. how confident the estimate is, given the value for the amount of error in it.

  • PDF

레이저 레이다를 이용한 무인차량의 지도생성 알고리즘 개발 (The Development of a Map Building Algorithm using LADAR for Unmanned Ground Vehicle)

  • 이정엽;이상훈;김정하;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1246-1253
    • /
    • 2009
  • To be high efficient for a navigation of unmanned ground vehicle, it must be able to distinguish between safe and hazardous regions in its immediate environment. We present an advanced method using laser range finder for building global 2D digital maps that include environment information. Laser range finder is used for mapping of obstacles and driving environment in the 2D laser plane. Rotary encoders are used for localization of UGV. The main contributions of this research are the development of an algorithm for global 2D map building and it will turn a UGV navigation based on map matching into a possibility. In this paper, a map building algorithm will be introduced and an assessment of algorithm reliability is judged at an each environment.

이동로봇을 위한 $H_{\infty}$ 필터 기반의 강인한 동시 위치인식 및 지도작성 구현 기술 ($H_{\infty}$ Filter Based Robust Simultaneous Localization and Mapping for Mobile Robots)

  • 전서현;이건용;도낙주
    • 전자공학회논문지SC
    • /
    • 제48권1호
    • /
    • pp.55-60
    • /
    • 2011
  • 이동로봇의 동시 위치인식 및 지도작성 (Simultaneous Localization And Mapping, SLAM) 에서 가장 기본이 되는 알고리즘은 확장 칼만 필터 SLAM(Extended Kalman Filter SLAM, EKF-SLAM)이다. 하지만 칼만 필터를 사용할 때, 시스템 설계자는 외부 입력에 대한 시스템적 특성과 외부 노이즈의 확률적 모델을 알고 있어야 하나, 실제 환경에서는 이를 정확히 파악할 수 없는 한계가 있다. 이에, 칼만 필터를 불확실성이 심한 실제 환경에 적용할 경우 내부 변수의 변화에 민감하게 반응하거나, 필터의 수학적 일관성이 지켜지지 않거나 또는 부정확한 상태 변수값을 추정하기도 한다. 이에 비해 $H_{\infty}$ 필터는 외부 모델에 대한 상세한 정보가 없을지라도 강인하게 상태를 예측할 수 있다는 장점을 가지고 있다. 본 논문에서는 이러한 $H_{\infty}$ 필터의 특성이 이용로봇의 SLAM 알고리즘의 성능 향상에 도움이 될 것이라는 아이디어에 착안하여 $H_{\infty}$ 필터에 가번한 SLAM 알고리즘을 제안하고 이를 모의 실험에 적용해 보았다. 이를 통해 불확실성이 큰 환경에서는 제안된 알고리즘이 기존의 EKF-SLAM에 비해 다소 우수한 예측 성능을 보임을 확인할 수 있었다.

동적 도시 환경에서 의미론적 시각적 장소 인식 (Semantic Visual Place Recognition in Dynamic Urban Environment)

  • 사바 아르샤드;김곤우
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.334-338
    • /
    • 2022
  • In visual simultaneous localization and mapping (vSLAM), the correct recognition of a place benefits in relocalization and improved map accuracy. However, its performance is significantly affected by the environmental conditions such as variation in light, viewpoints, seasons, and presence of dynamic objects. This research addresses the problem of feature occlusion caused by interference of dynamic objects leading to the poor performance of visual place recognition algorithm. To overcome the aforementioned problem, this research analyzes the role of scene semantics in correct detection of a place in challenging environments and presents a semantics aided visual place recognition method. Semantics being invariant to viewpoint changes and dynamic environment can improve the overall performance of the place matching method. The proposed method is evaluated on the two benchmark datasets with dynamic environment and seasonal changes. Experimental results show the improved performance of the visual place recognition method for vSLAM.