• Title/Summary/Keyword: Simulation-based

Search Result 25,597, Processing Time 0.066 seconds

Comparison of Acting Style Between 2D Hand-drawn Animation and 3D Computer Animation : Focused on Expression of Emotion by Using Close-up (2D 핸드 드로운 애니메이션과 3D 컴퓨터 애니메이션에서의 액팅(acting) 스타일 비교 -클로즈-업을 이용한 감정표현을 중심으로-)

  • Moon, Jaecheol;Kim, Yumi
    • Cartoon and Animation Studies
    • /
    • s.36
    • /
    • pp.147-165
    • /
    • 2014
  • Around the turn of 21st century, there has been a major technological shift in the animation industry. With development of reality-based computer graphics, major American animation studios replaced hand-drawn method with the new 3D computer graphics. Traditional animation was known for its simplified shapes such as circles and triangle that makes characters' movements distinctive from non-animated feature films. Computer-generated animation has largely replaced it, but is under continuous criticism that automated movements and reality-like graphics devaluate the aesthetics of animation. Although hand-drawn animation is still produced, 3D computer graphics have taken commercial lead and there has been many changes to acting of animated characters, which calls for detailed investigation. Firstly, the changes in acting of 3D characters can be traced from looking at human-like rigging method that mimics humanistic moving mechanism. Also, if hair and clothing was part of hand-drawn characters' acting, it has now been hidden inside mathematical simulation of 3D graphics, leaving only the body to be used in acting. Secondly, looking at "Stretch and Squash" method, which represents the distinctive movements of animation, through the lens of media, a paradox arises. Hand-drawn animation are produced frame-by-frame, and a subtle change would make animated frames shiver. This slight shivering acts as an aesthetic distinction of animated feature films, but can also require exaggerated movements to hide the shivering. On the contrary, acting of 3D animation make use of calculated movements that may seem exaggerated compared to human acting, but seem much more moderate and static compared to hand-drawn acting. Moreover, 3D computer graphics add the third dimension that allows more intuitive movements - maybe animators no longer need fine drawing skills; what they now need is directing skills to animate characters in 3D space intuitively. On the assumption that technological advancement and change of artistic expressionism are inseparable, this paper compares acting of 3D animation studio Pixar and classical drawing studio Disney to investigate character acting style and movements.

Simulation of Detailed Wind Flow over a Locally Heated Mountain Area Using a Computational Fluid Dynamics Model, CFD_NIMR_SNU - a fire case at Mt. Hwawang - (계산유체역학모형 CFD_NIMR_SNU를 이용한 국지적으로 가열된 산악지역의 상세 바람 흐름 모사 - 화왕산 산불 사례 -)

  • Koo, Hae-Jung;Choi, Young-Jean;Kim, Kyu-Rang;Byon, Jae-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.192-205
    • /
    • 2009
  • The unexpected wind over the Mt. Hwawang on 9 February 2009 was deadly when many spectators were watching a traditional event to burn dried grasses and the fire went out of control due to the wind. We analyzed the fatal wind based on wind flow simulations over a digitized complex terrain of the mountain with a localized heating area using a three dimensional computational fluid dynamics model, CFD_NIMR_SNU (Computational Fluid Dynamics_National Institute of Meteorological Research_Seoul National University). Three levels of fire intensity were simulated: no fire, $300^{\circ}C$ and $600^{\circ}C$ of surface temperature at the site on fire. The surface heat accelerated vertical wind speed by as much as $0.7\;m\;s^{-1}$ (for $300^{\circ}C$) and $1.1\;m\;s^{-1}$ (for $600^{\circ}C$) at the center of the fire. Turbulent kinetic energy was increased by the heat itself and by the increased mechanical force, which in turn was generated by the thermal convection. The heating together with the complex terrain and strong boundary wind induced the unexpected high wind conditions with turbulence at the mountain. The CFD_NIMR_SNU model provided valuable analysis data to understand the consequences of the fatal mountain fire. It is suggested that the place of fire was calm at the time of the fire setting due to the elevated terrain of the windward side. The suppression of wind was easily reversed when there was fire, which caused updraft of hot air by the fire and the strong boundary wind. The strong boundary wind in conjunction with the fire event caused the strong turbulence, resulting in many fire casualties. The model can be utilized in turbulence forecasting over a small area due to surface fire in conjunction with a mesoscale weather model to help fire prevention at the field.

Post Occupancy Evaluation of the Forest Experience Centers for Children (유아숲체험장의 이용후 평가)

  • Kang, Tae-Sun;Lee, Myung-Woo;Jeong, Moon-Sun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.109-123
    • /
    • 2017
  • Due to the positive effect of forest space for child development, the creation and operation of forest activity space of various organizations is increasing in quantity; however, the research on practical space design and management program is insufficient. Therefore, the purpose of this study is to evaluate the space and management programs of the forest experience centers through the post-occupancy evaluation of teachers and preschoolers participating in forest activities. To do this, we analyzed the selected twelve sites through field survey, class observation, and interviews with forest education specialists, and then surveyed 115 forest education experts and childcare teachers for importance, performance, overall satisfaction, and space preference. In addition, we accessed overall satisfaction and space preference of twenty-nine preschoolers through interviews, photo-simulation, and questionnaires. As a result, the importance and performance of management program area was rated higher than the spatial characteristics area. In terms of group comparison, the group with active structured program rated two areas higher than the groups with free play. Preschoolers with structured programs preferred facility space, but preschoolers with free play preferred nature. Two preschooler groups rated forest activity as satisfactory. Based on the analysis results: 1) The composition of the forest activity space should ensure accessibility, safety, diversity of diversity, water space, connect to the forest road, and secure various terrains, trees, and natural materials; 2) The management program should ensure that forest activity programs have the proportional balance of structural programs and free play; also. management programs should plan for sufficient free playtime and a high share of play in the forest; and 3) Ensure the role and expertise of forestry specialists and run a program to increase the autonomy of preschoolers.

Effectiveness Analysis for Traffic and Pedestrian Volumes of Pedestrian Pushbutton Signal (차량 및 보행자 교통량에 따른 보행자 작동신호기의 효과 분석)

  • Cho, Han-Seon;Park, Ji-Hyung;Noh, Jung-Hyun
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.33-43
    • /
    • 2007
  • Because usually signal controllers on the crosswalks of mid-block provide pedestrian signals every cycle based on the fixed signal plan, pedestrian signals are provided even when there is no pedestrian demand. Consequently, signal is operated inefficiently and this may cause drivels to experience useless delay or violate the signal. Even though recently pushbuttons have been installed to improve the efficiency of pedestrian signal control in the crosswalks of mid-block and the pedestrian safety. they are not spread out national-wide in Korea because of the cost of the pushbutton equipments and the lack of an acknowledgement of the efficiency of the pushbutton. In this study, the effectiveness of the pushbutton on saving the vehicle delay was verified through before and after study in 4 study sites using a traffic micro-simulation model, VISSIM. To evaluate the viability of the pushbutton, a benefit/cost analysis was also performed for 4 study sites. It was found that B/C ratio of all of 4 study sites was greater than 1. The sensitivity analysis for the traffic volume and pedestrian volume were performed to identify the impact of the both volume on the operation of pushbutton. And, a benefit/cost analysis was performed for all scenarios. It was found that when the pedestrian volume is greater than 90ped/h, the pedestrian signal was operated same as the fixed signal plan. That is, there is no benefit of pushbutton at all once the pedestrian volume is greater than 90ped/h. When the pedestrian volume is equal to or less than 90ped/h and the traffic volume is greater than 2,500veh/h, B/C ratio is greater than 1. Also it was found that as traffic volume increases and pedestrian volume decreases, the benefit increases. In this study, the criteria for installation of pushbutton on the crosswalks of mid-block are developed through the sensitivity analysis and benefit/cost analysis. The results of this study may be used as a criteria for expansion of pushbutton system.

  • PDF

A Study on the Calculation of Nonpoint Source EMCs using SWMM in Transportation Area (강우유출모형을 활용한 교통지역 비점오염원 EMCs 산정 연구)

  • Kwon, Heongak;Im, Toehyo;Lee, Jaewoon;Jeong, Hyungi;Lee, Chunsik;Cheon, Seuk
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.193-202
    • /
    • 2015
  • In this study, a long term monitering of nonpoint source pollution runoff is conducted at the area of transportation related and EMCs(Event Mean Concentrations) in terms of water quality items, such as BOD, $COD_{Mn}$, SS, T-N and T-P are determined for each not only runoff event and but also observation site. On the other hands, SWMM(Storm Water Management Model) model is constructed using the data collected in the transportation areas selected. Model calibration and verification of SWMM is carried out based on the data collected. And simulated EMCs was compared with observed EMCs by monitoring and prior studies. SWMM applicability estimation was Using the compared result. The results of simulation showed that BOD 5.787 ~ 14.475 mg/L, $COD_{Mn}$ 12.946 ~ 59.611 mg/L, SS 13.742 ~ 46.208 mg/L, T-N 2.037 ~ 5.213 mg/L, T-P 0.117 ~ 0.415 mg/L. And a differential between simulated EMCs and observed EMCs is too low so comparing result show high fit(BOD 4.27 %, $COD_{Mn}$ 4.87%, SS 2.31%, T-N 5.78%, T-P 14.45%). A results of compared with the prior studies, BOD and T-P are included range of prior studies, $COD_{Mn}$ and SS are lower than range of prior studies, T-N is higher than range of prior studies. Differential between simulated EMCs and prior studies EMCs was showing for survey seasonal and changing land-use, so from now on, EMCs of using the internal representatives value will be calculated by more monitoring toward various precipitation events.

A Study of a Non-commercial 3D Planning System, Plunc for Clinical Applicability (비 상업용 3차원 치료계획시스템인 Plunc의 임상적용 가능성에 대한 연구)

  • Cho, Byung-Chul;Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.16 no.1
    • /
    • pp.71-79
    • /
    • 1998
  • Purpose : The objective of this study is to introduce our installation of a non-commercial 3D Planning system, Plunc and confirm it's clinical applicability in various treatment situations. Materials and Methods : We obtained source codes of Plunc, offered by University of North Carolina and installed them on a Pentium Pro 200MHz (128MB RAM, Millenium VGA) with Linux operating system. To examine accuracy of dose distributions calculated by Plunc, we input beam data of 6MV Photon of our linear accelerator(Siemens MXE 6740) including tissue-maximum ratio, scatter-maximum ratio, attenuation coefficients and shapes of wedge filters. After then, we compared values of dose distributions(Percent depth dose; PDD, dose profiles with and without wedge filters, oblique incident beam, and dose distributions under air-gap) calculated by Plunc with measured values. Results : Plunc operated in almost real time except spending about 10 seconds in full volume dose distribution and dose-volume histogram(DVH) on the PC described above. As compared with measurements for irradiations of 90-cm 550 and 10-cm depth isocenter, the PDD curves calculated by Plunc did not exceed $1\%$ of inaccuracies except buildup region. For dose profiles with and without wedge filter, the calculated ones are accurate within $2\%$ except low-dose region outside irradiations where Plunc showed $5\%$ of dose reduction. For the oblique incident beam, it showed a good agreement except low dose region below $30\%$ of isocenter dose. In the case of dose distribution under air-gap, there was $5\%$ errors of the central-axis dose. Conclusion : By comparing photon dose calculations using the Plunc with measurements, we confirmed that Plunc showed acceptable accuracies about $2-5\%$ in typical treatment situations which was comparable to commercial planning systems using correction-based a1gorithms. Plunc does not have a function for electron beam planning up to the present. However, it is possible to implement electron dose calculation modules or more accurate photon dose calculation into the Plunc system. Plunc is shown to be useful to clear many limitations of 2D planning systems in clinics where a commercial 3D planning system is not available.

  • PDF

Development of Dose Planning System for Brachytherapy with High Dose Rate Using Ir-192 Source (고선량률 강내조사선원을 이용한 근접조사선량계획전산화 개발)

  • Choi Tae Jin;Yei Ji Won;Kim Jin Hee;Kim OK;Lee Ho Joon;Han Hyun Soo
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.283-293
    • /
    • 2002
  • Purpose : A PC based brachytherapy planning system was developed to display dose distributions on simulation images by 2D isodose curve including the dose profiles, dose-volume histogram and 30 dose distributions. Materials and Methods : Brachytherapy dose planning software was developed especially for the Ir-192 source, which had been developed by KAERI as a substitute for the Co-60 source. The dose computation was achieved by searching for a pre-computed dose matrix which was tabulated as a function of radial and axial distance from a source. In the computation process, the effects of the tissue scattering correction factor and anisotropic dose distributions were included. The computed dose distributions were displayed in 2D film image including the profile dose, 3D isodose curves with wire frame forms and dosevolume histogram. Results : The brachytherapy dose plan was initiated by obtaining source positions on the principal plane of the source axis. The dose distributions in tissue were computed on a $200\times200\;(mm^2)$ plane on which the source axis was located at the center of the plane. The point doses along the longitudinal axis of the source were $4.5\~9.0\%$ smaller than those on the radial axis of the plane, due to the anisotropy created by the cylindrical shape of the source. When compared to manual calculation, the point doses showed $1\~5\%$ discrepancies from the benchmarking plan. The 2D dose distributions of different planes were matched to the same administered isodose level in order to analyze the shape of the optimized dose level. The accumulated dose-volume histogram, displayed as a function of the percentage volume of administered minimum dose level, was used to guide the volume analysis. Conclusion : This study evaluated the developed computerized dose planning system of brachytherapy. The dose distribution was displayed on the coronal, sagittal and axial planes with the dose histogram. The accumulated DVH and 3D dose distributions provided by the developed system may be useful tools for dose analysis in comparison with orthogonal dose planning.

The Study of Dose Distribution according to the Using Linac and Tomotherapy on Total Lymphnode Irradiation (선형가속기와 토모치료기를 이용한 전림프계의 방사선 치료시 선량분포에 관한 연구)

  • Kim, Youngjae;Seol, Gwanguk
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.4
    • /
    • pp.285-291
    • /
    • 2013
  • In this study, compare and analyze the dose distribution and availability of radiation therapy when using a different devices to TNI(Total Lymphnodal Irradiation). Test subjects(patients) are 15 people(Male 7, Female 8). Acquire CT Simulation images of the 15 people using Somatom Sansation Open 16 channel and then acquired images was transferred to each treatment planning system Pinnacle Ver 8.0 and Tomotherapy Planning System and separate the tumor tissue and normal tissues(whole lung, spinal cord, Rt kidney, Lt kidney). Tumor prescription dose was set to 750 cGy. and then Compare the Dose Compatibility, Normal Tissue's Absorbed Dose, Dose Distribution and DVH. Statistical analysis was performed SPSS Ver. 18.0 by paired sample Assay. The absorbed dose in the tumor tissue was $751.0{\pm}4.7cGy$ in tomotherapy planning, $746.9{\pm}14.1cGy$ in linac. Tomotherapy's absorbed dose in the tumor was more appropriate than linac. and These values are not statistically significant(p>0.05). Tomotherapy plan's absorbed dose in the normal tissues were less than linac's plan. This value was statistically significant(p<0.05) excepted of whole lung. In DVH, appropriated on tumor and normal tissues in tomotherapy and linac but tomotherapy's TER was better than linac. Namely, a result of Absorbed dose in tumor and normal tissue, Dose distribution pattern, DVH, Both radiation therapy devices were appropriated in radiation therapy on TER. The Linac has a short treatment time(about 15-20 min) and open space on treatment time. It cause infant and pediatric patients to receiving uncomfortable treatment. So, In this case, it will be fine that Linac based therapy was restricted use. and if the patient was cooperative, it will be show a better prognosis that Tomotherapy using Radiation Therapy.

A Stochastic Study for the Emergency Treatment of Carbon Monoxide Poisoning in Korea (일산화탄소중독(一酸化炭素中毒)의 진료대책(診療對策) 수립(樹立)을 위한 추계학적(推計學的) 연구(硏究))

  • Kim, Yong-Ik;Yun, Dork-Ro;Shin, Young-Soo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.16 no.1
    • /
    • pp.135-152
    • /
    • 1983
  • Emergency medical service is an important part of the health care delivery system, and the optimal allocation of resources and their efficient utilization are essentially demanded. Since these conditions are the prerequisite to prompt treatment which, in turn, will be crucial for life saving and in reducing the undesirable sequelae of the event. This study, taking the hyperbaric chamber for carbon monoxide poisoning as an example, is to develop a stochastic approach for solving the problems of optimal allocation of such emergency medical facility in Korea. The hyperbaric chamber, in Korea, is used almost exclusively for the treatment of acute carbon monoxide poisoning, most of which occur at home, since the coal briquette is used as domestic fuel by 69.6 per cent of the Korean population. The annual incidence rate of the comatous and fatal carbon monoxide poisoning is estimated at 45.5 per 10,000 of coal briquette-using population. It offers a serious public health problem and occupies a large portion of the emergency outpatients, especially in the winter season. The requirement of hyperbaric chambers can be calculated by setting the level of the annual queueing rate, which is here defined as the proportion of the annual number of the queued patients among the annual number of the total patients. The rate is determined by the size of the coal briquette-using population which generate a certain number of carbon monoxide poisoning patients in terms of the annual incidence rate, and the number of hyperbaric chambers per hospital to which the patients are sent, assuming that there is no referral of the patients among hospitals. The queueing occurs due to the conflicting events of the 'arrival' of the patients and the 'service' of the hyperbaric chambers. Here, we can assume that the length of the service time of hyperbaric chambers is fixed at sixty minutes, and the service discipline is based on 'first come, first served'. The arrival pattern of the carbon monoxide poisoning is relatively unique, because it usually occurs while the people are in bed. Diurnal variation of the carbon monoxide poisoning can hardly be formulated mathematically, so empirical cumulative distribution of the probability of the hourly arrival of the patients was used for Monte Carlo simulation to calculate the probability of queueing by the number of the patients per day, for the cases of one, two or three hyperbaric chambers assumed to be available per hospital. Incidence of the carbon monoxide poisoning also has strong seasonal variation, because of the four distinctive seasons in Korea. So the number of the patients per day could not be assumed to be distributed according to the Poisson distribution. Testing the fitness of various distributions of rare event, it turned out to be that the daily distribution of the carbon monoxide poisoning fits well to the Polya-Eggenberger distribution. With this model, we could forecast the number of the poisonings per day by the size of the coal-briquette using population. By combining the probability of queueing by the number of patients per day, and the probability of the number of patients per day in a year, we can estimate the number of the queued patients and the number of the patients in a year by the number of hyperbaric chamber per hospital and by the size of coal briquette-using population. Setting 5 per cent as the annual queueing rate, the required number of hyperbaric chambers was calculated for each province and for the whole country, in the cases of 25, 50, 75 and 100 per cent of the treatment rate which stand for the rate of the patients treated by hyperbaric chamber among the patients who are to be treated. Findings of the study were as follows. 1. Probability of the number of patients per day follows Polya-Eggenberger distribution. $$P(X=\gamma)=\frac{\Pi\limits_{k=1}^\gamma[m+(K-1)\times10.86]}{\gamma!}\times11.86^{-{(\frac{m}{10.86}+\gamma)}}$$ when$${\gamma}=1,2,...,n$$$$P(X=0)=11.86^{-(m/10.86)}$$ when $${\gamma}=0$$ Hourly arrival pattern of the patients turned out to be bimodal, the large peak was observed in $7 : 00{\sim}8 : 00$ a.m., and the small peak in $11 : 00{\sim}12 : 00$ p.m. 2. In the cases of only one or two hyperbaric chambers installed per hospital, the annual queueing rate will be at the level of more than 5 per cent. Only in case of three chambers, however, the rate will reach 5 per cent when the average number of the patients per day is 0.481. 3. According to the results above, a hospital equipped with three hyperbaric chambers will be able to serve 166,485, 83,242, 55,495 and 41,620 of population, when the treatmet rate are 25, 50, 75 and 100 per cent. 4. The required number of hyperbaric chambers are estimated at 483, 963, 1,441 and 1,923 when the treatment rate are taken as 25, 50, 75 and 100 per cent. Therefore, the shortage are respectively turned out to be 312, 791. 1,270 and 1,752. The author believes that the methodology developed in this study will also be applicable to the problems of resource allocation for the other kinds of the emergency medical facilities.

  • PDF

Change of Hydraulic Properties of Sand due to Fine Diatom Particle Migration (미세 Diatom 입자 이동에 의한 모래지반의 투수 특성 변화)

  • Pyo, Won-Mi;Lee, Jong-Sub;Lee, Joo Yong;Hong, Won-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.19-32
    • /
    • 2018
  • During the process of gas hydrate extraction in the deep seabed, fine diatom particle migration occurs, which causes the seabed slope failure and the productivity deterioration of the gas hydrate. Therefore, a study related with the changes of the ground characteristics due to the fine particle migration is required. The objective of this study is to investigate the change of hydraulic properties of sand due to the migration of fine diatom particle in sandy soils. In order to simulate the sediments of the Ulleung basin gas hydrate in the East Sea, fifteen sand-diatom mixtures that have different diatom volume fractions (DVF) are prepared. During the falling head permeability tests, the coefficients of permeability are measured according to the DVF. In addition, for the simulation of the fine diatom particle migration, constant head permeability tests are conducted by applying the hydraulic pressures of 3 kPa, 6kPa, and 9 kPa on a specimen composed of two layers: a specimen with 50% DVF in upper layer and a specimen with 0% DVF in lower layer. Furthermore, the coefficient of permeability and the electrical resistivity of the migration zone are measured during the constant head permeability test. The falling head permeability tests show that the coefficient of permeability decreases as the DVF of the specimen increases. In addition, the gradient of the coefficient of permeability curve decreases in the DVF range of 10%~50% compared with that of 0%~10%, and increases above 50% in DVF. The result of constant head permeability tests shows that the coefficient of permeability decreases and electrical resistivity increases in the migration zone due to the fine diatom particle migration. This study demonstrates that fine diatom particle migration reduces the permeability of the soils and the behavior of the migration zone due to the fine diatom particle migration may be estimated based on the reversal relationship between the coefficient of permeability and the electrical resistivity.