DOI QR코드

DOI QR Code

Change of Hydraulic Properties of Sand due to Fine Diatom Particle Migration

미세 Diatom 입자 이동에 의한 모래지반의 투수 특성 변화

  • Pyo, Won-Mi (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Joo Yong (Korea Institute of Geoscience and Mineral resources) ;
  • Hong, Won-Taek (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 표원미 (고려대학교 건축사회환경공학부) ;
  • 이종섭 (고려대학교 건축사회환경공학부) ;
  • 이주용 (한국지질자원연구원 석유해저자원연구부) ;
  • 홍원택 (고려대학교 건축사회환경공학부)
  • Received : 2017.10.16
  • Accepted : 2018.02.02
  • Published : 2018.02.28

Abstract

During the process of gas hydrate extraction in the deep seabed, fine diatom particle migration occurs, which causes the seabed slope failure and the productivity deterioration of the gas hydrate. Therefore, a study related with the changes of the ground characteristics due to the fine particle migration is required. The objective of this study is to investigate the change of hydraulic properties of sand due to the migration of fine diatom particle in sandy soils. In order to simulate the sediments of the Ulleung basin gas hydrate in the East Sea, fifteen sand-diatom mixtures that have different diatom volume fractions (DVF) are prepared. During the falling head permeability tests, the coefficients of permeability are measured according to the DVF. In addition, for the simulation of the fine diatom particle migration, constant head permeability tests are conducted by applying the hydraulic pressures of 3 kPa, 6kPa, and 9 kPa on a specimen composed of two layers: a specimen with 50% DVF in upper layer and a specimen with 0% DVF in lower layer. Furthermore, the coefficient of permeability and the electrical resistivity of the migration zone are measured during the constant head permeability test. The falling head permeability tests show that the coefficient of permeability decreases as the DVF of the specimen increases. In addition, the gradient of the coefficient of permeability curve decreases in the DVF range of 10%~50% compared with that of 0%~10%, and increases above 50% in DVF. The result of constant head permeability tests shows that the coefficient of permeability decreases and electrical resistivity increases in the migration zone due to the fine diatom particle migration. This study demonstrates that fine diatom particle migration reduces the permeability of the soils and the behavior of the migration zone due to the fine diatom particle migration may be estimated based on the reversal relationship between the coefficient of permeability and the electrical resistivity.

심해저 지반에서 가스하이드레이트를 추출하는 경우 diatom과 같은 미세 입자 이동으로 인하여 해저 사면파괴 및 생산성 저하가 발생할 수 있으므로, 미세 입자 이동과 동반한 해저 지반특성 변화에 대한 연구가 요구된다. 본 연구에서는, 모래 지반에 대하여 투수가 발생할 시 미세 diatom 입자 이동으로 인한 지반의 수리 특성 변화를 평가하고자 하였다. 우선 동해 울릉분지 가스하이드레이트 퇴적층을 모사하기 위하여 주문진 표준사와 diatom 혼합 시료를 부피비에 따라 15개의 시료로 조성 및 변수위 투수실험을 수행하였다. 또한 diatom 부피비 50% 및 0%인 교호층 시료의 상 하부 수압차를 3kPa, 6kPa, 9kPa로 조정하여 정수위 투수실험을 수행함으로써 미세 diatom 입자 이동을 모사하고 입자이동 구간에서의 투수계수 및 전기비저항을 측정하였다. 변수위 투수 실험 결과, diatom의 부피비가 증가할수록 시료의 투수계수가 감소하였고, 투수계수 감소 곡선은 diatom 부피비가 10% 이하일 때보다 10%~50% 구간에서 기울기가 완만해 졌으며, diatom 부피비가 50%이상일 때 다시 기울기가 증가하였다. 정수위 투수 실험 결과, diatom이 이동하여 diatom 입자 이동 구간의 투수계수는 감소하고 전기비저항은 증가하였다. 본 연구는 미세 입자 이동이 교호층 지반의 투수계수를 감소시키며, 투수계수와 전기비저항의 반비례관계를 바탕으로 미세 입자 이동으로 인한 혼합시료의 거동을 예측할 수 있음을 보여준다.

Keywords

References

  1. An, S., Park, S., Shin, H., Kim, B., and Lee, J. (2008), "The Status of the Development of Production Technology of the Gas Hydrate", Journal of The Korean Society for New and Renewable Energy, pp.216-219.
  2. Archie, G. E. (1942), "The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics", Transactions of the AIME, Vol.146, No.1, pp.54-62. https://doi.org/10.2118/942054-G
  3. Bahk, J. J., Kim, D. H., Chun, J. H., Son, B. K., Kim, J. H., Ryu, B. J., Torres, M. E., Riedel, M., and Schultheiss, P. (2013), "Gas Hydrate Occurrences and their Relation to Host Sediment Properties: Results from Second Ulleung Basin Gas Hydrate Drilling Expedition, East Sea", Marine and Petroleum Geology, Vol.47, pp.21-29. https://doi.org/10.1016/j.marpetgeo.2013.05.006
  4. Boadu, F. K. (2000), "Hydraulic Conductivity of Soils from Grain-Size Distribution: New Models", Journal of Geotechnical and Geoenvironmental Engineering, Vol.126, No.8, pp.739-746. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:8(739)
  5. Casagrande, A. and Fadum, R. E. (1940), "Notes on Soil Testing for Engineering Purposes", Soil Mech. Series No. 8, Harvard Graduate School of Engineering, Cambridge, MA, USA.
  6. Chapuis, R. P. and Aubertin, M. (2003), "Predicting the Coefficient of Permeability of Soils Using the Kozeny-Carman Equation", Ecole polytechnique de Montreal, 31p.
  7. Das, B. M. (2013), "Advanced soil mechanics", CRC Press, 457p.
  8. Head, K. H. (1994), "Manual of Soil Laboratory Testing volume 2: Permeability, shear strength and compressibility tests", Pentech press, London, 440p.
  9. Hsiao, D. H. (2015), "Engineering behavior and Correlated Parameters from Obtained Results of Sand-silt Mixtures", Soil Dynamics and Earthquake Engineering, Vol.77, pp.137-151. https://doi.org/10.1016/j.soildyn.2015.05.005
  10. Indraratna, B., Vafai, F., and Haque, A. (1998), "Experimental and Analytical Modelling of Filtration in Granular Media", Filtration and Drainage in Geotechnical/Geoenvironmantal Engineering, the Geo-Institute of American Society of Civil Engineers, No.78, pp. 89-106.
  11. Jung, J. W., Jang, J., Santamarina, J. C., Tsouris, C., Phelps, T. J., and Rawn, C. J. (2011), "Gas Production from Hydrate-bearing Sediments: The Role of Fine Particles", Energy & Fuels, Vol.26, No.1, pp.480-487. https://doi.org/10.1021/ef101651b
  12. Kang, M. and Lee, J. S. (2015), "Evaluation of the Freezing-thawing Effect in Sand-silt Mixtures Using Elastic Waves and Electrical Resistivity", Cold Regions Science and Technology, Vo.113, pp.1-11. https://doi.org/10.1016/j.coldregions.2015.02.004
  13. Karim, M. E. and Alam, M. J. (2017), "Effect of Nonplastic Silt Content on Undrained Shear Strength of Sand-silt Mixtures", International Journal of Geo-Engineering, Vol.8, Paper No.14, DOI 10.1186/s40703-017-0051-1.
  14. Kim, H. S., Cho, G. C., Lee, J. Y., and Kim, S. J. (2013), "Geotechnical and Geophysical Properties of Deep Marine Fine-grained Sediments Recovered during the Second Ulleung Basin Gas Hydrate Expedition, East Sea, Korea", Marine and Petroleum Geology, Vol.47, pp.56-65. https://doi.org/10.1016/j.marpetgeo.2013.05.009
  15. Kim, J. H., Yoon, H. K., Choi, Y. K., and Lee, J. S. (2009a), "Porosity Evaluation of Offshore Soft Soils by Electrical Resistivity Cone Probe", Journal of the Korean Geotechnical Society, Vol.25, No.2, pp.45-54.
  16. Kim, J. H., Yoon, H. K., Jung, S. H., and Lee, J. S. (2009b), "Development and Verification of 4-electrode Resistivity Probe", Journal of The Korean Society of Civil Engineers, Vol.29, No.3C, pp.127-136.
  17. Kim, J. H., Yoon, H. K., and Lee, J. S. (2011a), "Void Ratio Estimation of Soft Soils using Electrical Resistivity Cone Probe", Journal of Geotechnical and Geoenvironmental Engineering, Vol.137, no.1, pp.86-93. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000405
  18. Kim, J. H., Yoon, H. K., Cho, S. H., Kim, Y. S., and Lee, J. S. (2011b), "Four Electrode Resistivity Probe for Porosity Evaluation", Geotechnical Testing Journal, Vol.34, No.6, pp.668-675.
  19. Kim, S., Park, S., and Hamm, S. Y. (2013), "Relationship between Hydraulic Conductivity and Electrical Resistivity of Standard Sand and Glass Bead", Economic and Environmental Geology, The Korean Society of Economic and Environmental Geology, Vol.46, No.3, pp.215-220.
  20. Kuerbis, R. and Vaid, Y. P. (1988), "Sand Sample Preparation-the Slurry Deposition Method", Soils and Foundations, Vol.28, No.4, pp.107-118. https://doi.org/10.3208/sandf1972.28.4_107
  21. Lade, P. V., Liggio, C.D., and Yamamuro, J. A. (1998), "Effects of Non-plastic Fines on Minimum and Maximum Void Ratio of Sand", Geotechnical Testing Journal, ASTM, Vol.21, No.4, pp. 336-347. https://doi.org/10.1520/GTJ11373J
  22. Lee, C., Lee, J. S., Lee, W., and Cho, T. H. (2008), "Experiment Setup for Shear Wave and Electrical Resistance Measurements in an Oedometer", Geotechnical Testing Journal, ASTM, Vol.31, No.2, pp.149-156.
  23. Lin, C. H., Lee, V. W., and Trifunac, M. D. (2005), "The Reflection of Plane Waves in a Poroelastic Half-space Saturated with Inviscid Fluid", Soil Dynamics and Earthquake Engineering, Vol.25, No.3, pp.205-223. https://doi.org/10.1016/j.soildyn.2004.10.009
  24. Park, S. G., Kim, J. H., Cho, S. J., Yi, M. J., and Son, J. S. (2004), "Electrical Resistivity Characteristic of Soils", In Proceedings of the Korean Geotechnical Society Conference, Korean Geotechnical Society, pp.847-854.
  25. Palomino, A. M., Kim, S., Summitt, A., and Fratta, D. (2011), "Impact of Diatoms on Fabric and Chemical Stability of Diatomkaolin Mixtures", Applied Clay Science, Vol.51, No.3, pp.287-294. https://doi.org/10.1016/j.clay.2010.12.002
  26. Salako, A. O. and Adepelumi, A. A. (2016), "Evaluation of Hydraulic Conductivity of Subsoil using Electrical Resistivity and Ground Penetrating Radar Data: Example from Southwestern Nigeria", International Journal of Geo-Engineering, Vol.7, Paper No.5, DOI 10.1186/s40703-016-0018-7.
  27. Salgado, R., Bandini, P., and Karim, A. (2000), "Shear Strength and Stiffness of Silty Sand", Journal of Geotechnical and Geoenvironmental Engineering, Vol.126, No.5, pp.451-462. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451)
  28. Shiwakoti, D. R., Tanaka, H., Tanaka, M., and Locart, J. (2002), "Influences of Diatom Microfossils on Engineering Properties of Soils", Soils and Foundations, Vol.42, No.3, pp.1-17. https://doi.org/10.3208/sandf.42.3_1
  29. Valdes, J. R. (2002), "Fines migration and formation damagemicroscale studies", Doctoral dissertation, Georgia Institute of Technology, Atlanta, GA, 241p.
  30. Wang, S., Chan, D., and Lam, K. C. (2009), "Experimental Study of the Effect of Fines Content on Dynamic Compaction Grouting in Completely Decomposed Granite of Hong Kong", Construction and Building Materials, Vol.23, pp.1249-1264. https://doi.org/10.1016/j.conbuildmat.2008.08.002
  31. Yoon, H. K. and Lee, J. S. (2010), "Field Velocity Resistivity Probe for Estimating Stiffness and Void Ratio", Soil Dynamics and Earthquake Engineering, Vol.30, No.12, pp.1540-1549. https://doi.org/10.1016/j.soildyn.2010.07.008
  32. Yun, T. S. (2011), "Gas Hydrate: Environments and Energy", Journal of the Korean Society of Civil Engineers, Korean Society of Civil Engineers, Vol.59, No.9, pp.12-15.