• Title/Summary/Keyword: Simulation Work

Search Result 3,284, Processing Time 0.026 seconds

Grand Average in MEG and Crude Estimation of Anatomical Site (뇌자도에서 전체 평균과 이를 이용한 해부학적 위치 추정)

  • Kwon H.;Kim K.;Kim J. M.;Lee Y. H.;Park Y. K.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.575-580
    • /
    • 2004
  • In this work, a method is presented to find an anatomical site of a current source crudely in a standard brain using grand average of MEG data. Minimum norm estimation algorithm and truncated singular value decomposition were applied to calculate the distributed sources that can reproduce the measured signals. Grand average over all subjects was obtained from the transformed signals, which would be detected in a standard sensor plane by the obtained distributed current sources. In the simulation study, it was shown that the localized dipole using the grand average is consistent with the mean location of localized dipoles of all subjects within several mm even with large inter-individual differences of sensor positions. This result suggests that the mean location of low level signal source can be estimated as a dipole source in grand average and it was confirmed in the localization of the current source of N100m. when the localized dipole is registered on a standard brain. This result also suggests that the activity region obtained from grand average can be crudely estimated on a standard brain using the source location of the N100m as a reference point.

Sink Location Service via Circle Path for Geographic Routing in Wireless Sensor Networks (무선 센서 네트워크에서 위치 기반 라우팅을 위한 원형 경로 기반 싱크 위치 서비스)

  • Park, Ho-Sung;Lee, Jeong-Cheol;Oh, Seung-Min;Yim, Young-Bin;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6A
    • /
    • pp.585-593
    • /
    • 2010
  • Geographic routing has been considered as an efficient, simple, and scalable routing protocol for wireless sensor networks since it exploits pure local location information instead of global topology information to route data packets. Geographic routing requires the sources nodes to be aware of the location of sinks. Most existing geographic routing protocols merely assume that source nodes are aware of the locations of sinks. How can source nodes get the locations of sinks was not addressed in detail. In this paper, we propose a sink location service via circle path for geographic routing in wireless sensor networks. In this scheme, a sink sends a Sink Location Announcement (SLA) message along a circle path, and a source node sends a Sink Location Query (SLQ) message along a straight path that certainly passes through the circle path. By this way we can guarantee the SLQ path and SLA path have at least one crossing point. The node located on the crossing point of the two paths informs the source node the sink location. This procedure can correctly work in any irregular profile sensor networks such as network that has holes or irregular shape by some rules. Simulation results show that our protocol is superior to other protocols in terms of energy consumption and control overhead.

Design and Verification of PCI 2.2 Target Controller to support Prefetch Request (프리페치 요구를 지원하는 PCI 2.2 타겟 컨트롤러 설계 및 검증)

  • Hyun Eugin;Seong Kwang-Su
    • The KIPS Transactions:PartA
    • /
    • v.12A no.6 s.96
    • /
    • pp.523-530
    • /
    • 2005
  • When a PCI 2.2 bus master requests data using Memory Read command, a target device may hold PCI bus without data to be transferred for long time because a target device needs time to prepare data infernally. Because the usage efficiency of the PCI bus and the data transfer efficiency are decreased due to this situation, the PCI specification recommends to use the Delayed Transaction mechanism to improve the system performance. But the mechanism cann't fully improve performance because a target device doesn't know the exact size of prefetched data. In the previous work, we propose a new method called Prefetch Request when a bus master intends to read data from the target device. In this paper, we design PCI 2.2 controller and local device that support the proposed method. The designed PCI 2.2 controller has simple local interface and it is used to convert the PCI protocol into the local protocol. So the typical users, who don't know the PCI protocol, can easily design the PCI target device using the proposed PCI controller. We propose the basic behavioral verification, hardware design verification, and random test verification to verify the designed hardware. We also build the test bench and define assembler instructions. And we propose random testing environment, which consist of reference model, random generator ,and compare engine, to efficiently verify corner case. This verification environment is excellent to find error which is not detected by general test vector. Also, the simulation under the proposed test environment shows that the proposed method has the higher data transfer efficiency than the Delayed Transaction about $9\%$.

D-$\Pi$-A designed dye chromophores and nanoparticles: optical properties, chemosensor effects and PE/Aramid fiber colorations

  • Son, Young-A;Kim, Su-Ho;Kim, Young-Sung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.40-40
    • /
    • 2010
  • Studies on attractive color changing property of dye chromophore and fluorophore have been greatly enjoyed in the related industrial and research fields such as optoelectronics, chemosensor, biosensor and so on. The optical property based on D-$\Pi$-A intramolecular charge transfer (ICT) system of chromophore molecules can be utilized as suitable sensing probes for checking media polarity and determining colorimetric chemosensing effect, especially heavy metal detection. These finding are obtained by absorption and emission properties. In this work, donor-acceptor D-$\Pi$-A type fluorescent dyes were designed and synthesized with the corresponding donor and acceptor groups. The selected donor moieties might be provided prominent amorphous properties which are very useful in designing and synthesizing functional polymers and in fabricating devices. Another reasons to choose are commercial availabilities in high purity and low price. Donor-bridge-acceptor (D-A) type dyes can produce impressive optical-physical properties, yielding them potentially suitable for applications in the synthesis of small functional organic molecules. Small organic functional molecules have unique advantages, such as better solubility, amorphous character, and represent an area of research which needs to be explored and developed. Currently, their applications in metalorganic compounds is rapidly expanding and becoming widespread in self-assembly processes, photoluminescence applications, chiral organocatalysts, and ingrafts with nanomaterials. Colloidal nanoparticles have received great attentions in recent years. The photophysical properties of nanoparticles, particularly in terms of brightness, photostability, emission color purity and broad adsorption range, are very attractive functions in many applications. To our knowledge background, colloidal nanoparticles have been enjoyed their applications in bio-probe research fields. This research interest can be raised by the advantages of the materials such as high photoluminescence quantum yields, sharp emission band, long-term photostability and broad excitation spectra. In recent, the uses of nanoparticles being embedded in a polymer matrix and binded on polymer surface have been explored and their properties such as photo-activation and strong photoluminescence have been proposed. The prepared chromophores and nanoparticles were investigated with absorption and emission properties, solvatochromic behaviors, pH induced color switching effects, chemosensing effects and HOMO/LUMO energy potentials with computer simulation. In addition, synthesized fluorophore dyes and particles were applied onto PE/Aramid fiber fluorescing colorations. And the related details were then discussed.

  • PDF

Analysis of Crashworthiness Characteristics of a Regional Aircraft Fuselage using an Explicit Finite Element Method (외연적 유한요소기법을 활용한 리저널급 항공기 동체 내추락 특성 분석)

  • Park, Ill-Kyung;Kim, Sung-Joon;Hwang, In-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1070-1079
    • /
    • 2012
  • The impact energy absorbing is a very important characteristic of an aircraft to enhance the survivability of occupants when an aircraft is under the survivable accident such as an emergency landing condition. The impact energy is generally transmitted into the occupant and absorbed through a landing gear, a subfloor (lower structure of fuselage), and a seat. The characteristic of crash energy absorbing of a subfloor depends on the type of an aircraft, a shape of structure, and an applied material. Therefore, the study of crashworthiness characteristics of a subfloor structure is very important work to improve the safety of an aircraft. In this study, a finite element model of a narrow body fuselage section for the 80~90 seats regional aircraft was developed and crash simulation was executed using an explicit finite element analysis. Through survey of the impact energy distribution of each structural part of a fuselage and floor-level acceleration response, the crashworthiness characteristics and performance was evaluated.

A study on the improvement of work flow and productivity in complex manufacturing line by employing the effective process control methods (복잡한 생산라인에서 효율적 공정관리 기법 도입에 따른 공정흐름 및 생산성 개선 연구)

  • Park, Kyungmin;Jeong, Sukjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.305-315
    • /
    • 2016
  • Due to the change from small volume production to small quantity batch production systems, individual companies have been attempting to produce a wide range of operating strategies, maximize their productivity, and minimize their WIP level by operating with the proper cycle time to defend their market share. In particular, using a complex workflow and process sequence in the manufacturing line has some drawbacks when it comes to designing the production strategy by applying analytical models, such as mathematical models and queueing theory. For this purpose, this paper uses three heuristic algorithms to solve the job release problem at the bottleneck workstation, product mix problem in multi-purpose machine(s), and batch size and sequence in batch machine(s). To verify the effectiveness of the proposed methods, a simulation analysis was performed. The experimental results demonstrated that the combined application of the proposed methods showed positive effects on the reduction of the cycle time and WIP level, and improvement of the throughput.

A Case Study on the Traffic Operational Guidance for Temporary Closure of Climbing Lane; Focusing on Nakdong JC at Jungbunaeryuk Expressway (오르막차로 일시 폐쇄를 위한 교통운영기준 사례연구 (중부내륙고속도로 낙동JC를 중심으로))

  • Choi, Yoon-Hyuk;Lee, Seung-Jun;Bae, Young-Seok;Ko, Han-Geom
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.17-28
    • /
    • 2010
  • A climbing lane is installed to separate low-speed traffic from high-speed traffic if drastic traffic capacity reduction is expected due to a large number of vehicles that slow down in the upward section. Existing studies on climbing lanes have focused on the designation, location of starting and ending points, and installation method of climbing lane with regard to road design standards. However, in terms of traffic operation, it was known that the climbing lanes cause traffic congestion due to the increase of traffic volumes. In this regard, this study aims to establish traffic operational guidance as to how much effects temporary closure of climbing lanes can have on traffic improvement according to the volume-capacity ratio, grade, and composition of trucks. A test section of simulated climbing lane was selected in Nakdong JC bound for Masan(136.9K~133.3K, 3.6km, 3.7%) on Jungbunaeryuk expressway to conduct VISSIM analyses, microscopic traffic simulation based on such control variables as traffic volume(v/c), grade and the trucks ratio. As a result of the analyses, it has been found that v/c and the ratio of trucks are the key variables for efficient traffic management of climbing lanes in order to relieve traffic congestion via climbing lane. If ratio of trucks are more than 50% and when v/c would be 0.8, both climbing lane would be closed and non-operated regardless of grade and ratio of trucks when v/c is 1.0. With the increased traffic due to a five-day work week system, continued peak hours during the weekday, increased and various patterns of congestion on expressway, this study would be expected to contribute to facilitating researches on flexible operational standards for road facilities.

Performance Analysis of the Channel Equalizers for Partial Response Channels (부분 응답 채널을 위한 채널 등화기들의 성능 분석에 관한 연구)

  • Lee, Sang-Kyung;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.739-752
    • /
    • 2002
  • Recently, to utilize the limited bandwidth effectively, the concept of partial response (PR) signaling has widely been adopted in both the high-speed data transmission and high-density digital recording/playback systems such as digital microwave, digital subscriber loops, hard disk drives, digital VCR's and digital versatile recordable disks and so on. This paper is concerned with adaptive equalization of partial response channels particularly for the magnetic recording channels. Specifically we study how the PR channel equalizers work for different choices of desired or reference signals used for adjusting the equalizer weights. In doing so, we consider three different configurations that are actually implemented in the commercial products mentioned above. First of all, we show how to compute the theoretical values of the optimum Wiener solutions derived by minimizing the mean-squared error (MSE) at the equalizer output. Noting that this equalizer MSE measure cannot be used to fairly compare the three configurations, we propose to use the data MSE that is computer just before the final detector for the underlying PR system. We also express the data MSE in terms of the channel impulse response values, source data power and additive noise power, thereby making it possible to compare the performance of the configurations under study. The results of extensive computer simulation indicate that our theoretical derivation is correct with high precision. Comparing the three configurations, it also turns out that one of the three configurations needs to be further improved in performance although it has an apparent advantage over the others in terms of memory size when implemented using RAM's for the decision feedback part.

A Study of wear and Matching of Diesel Engine Exhaust Valve and Seat Insert Depending on Valve Materials (디젤엔진 배기밸브와 시트 인서트의 밸브 재질에 따른 마모 및 매칭성 연구)

  • Kim, Yang-Soo;Chun, Keyoung-Jin;Hong, Jae-Soo;Chung, Dong-Teak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.108-115
    • /
    • 2008
  • The wear on engine valve and seat insert is one of the most important factors affecting engine performance. The engine valve and seat insert must be able to withstand the severe environment that is created by: high temperature exhaust gases generated while the engine is running, rapid movement of the valve spring, high pressure generated in the explosive process. In order to study such problems, a simulator has been developed to generate and control high temperatures and various speeds during motion. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. This work focused on the test of various degrees of wear on four different exhaust valve materials such as HRV40, HRV40-FNV (face nitrided valve), STL #32, STL #6,. Throughout all tests performed in this study, the outer surface temperature of the seat insert was controlled at $350^{\circ}C$, the cycle number was $4.0{\times}10^6$, the test load was 6860 N, the fuel was LPG the test speed was 20 Hz (2400 RPM) and the seat insert material was HVS1-2. The mean (standard deviation) maximum roughness of the exhaust valve and seat insert was $25.44\;(3.16)\;{\mu}m$ and $27.53\;(3.60)\;{\mu}m$ at the HRV40, $21.58\;(2.38)\;{\mu}m$ and $25.94\;(3.07)\;{\mu}m$ at the HRV40-FNV, $36.73\;(8.98)\;{\mu}m$ and $61.38\;(7.84)\;{\mu}m$ at the STL #32, $73.64\;(23.80)\;{\mu}m$ and $60.80\;(13.49)\;{\mu}m$ at the STL #6, respectively. It was discovered that the maximum roughness of exhaust valve was lower as the high temperature hardness of the valve material was higher under the same test conditions such as temperature, test speed, cycle number, test load and seat insert material. The set of the HRV40-FNV exhaust valve and the HVS1-2 seat insert showed the best wear resistance.

Polygonal Grain-Based Distinct Element Modelling of Mechanical Characteristics and Transverse Isotropy of Rock (다각형 입자 기반 개별요소모델을 통한 암석의 역학적 특성과 횡등방성 모사)

  • Park, Jung-Wook;Park, Chan;Ryu, Dongwoo;Choi, Byung-Hee;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.235-252
    • /
    • 2016
  • This study presents a methodology to reproduce the mechanical behavior of isotropic or transversely isotropic rock using the polygonal grain-based distinct element model. A numerical technique to monitor the evolution of micro-cracks during the simulation was developed in the present study, which enabled us to examine the contribution of tensile cracking and shear cracking to the progressive process of the failure. The numerical results demonstrated good agreement with general observations from rock specimens in terms of the behavior and the evolution of micro-cracks, suggesting the capability of the model to represent the mechanical behavior of rock. We also carried out a parametric study as a fundamental work to examine the relationships between the microscopic properties of the constituents and the macroscopic behavior of the model. Depending on the micro-properties, the model exhibited a variety of responses to the external load in terms of the strength and deformation characteristics. In addition, a numerical technique to reproduce the transversely isotropic rock was suggested and applied to Asan gneiss from Korea. The behavior of the numerical model was in good agreement with the results obtained in the laboratory-scale experiments of the rock.