DOI QR코드

DOI QR Code

Analysis of Crashworthiness Characteristics of a Regional Aircraft Fuselage using an Explicit Finite Element Method

외연적 유한요소기법을 활용한 리저널급 항공기 동체 내추락 특성 분석

  • Park, Ill-Kyung (Aircraft Structures Team, Korea Aerospace Research Institute) ;
  • Kim, Sung-Joon (Aircraft Structures Team, Korea Aerospace Research Institute) ;
  • Hwang, In-Hee (Aircraft Structures Team, Korea Aerospace Research Institute)
  • Received : 2012.08.26
  • Accepted : 2012.11.22
  • Published : 2012.12.01

Abstract

The impact energy absorbing is a very important characteristic of an aircraft to enhance the survivability of occupants when an aircraft is under the survivable accident such as an emergency landing condition. The impact energy is generally transmitted into the occupant and absorbed through a landing gear, a subfloor (lower structure of fuselage), and a seat. The characteristic of crash energy absorbing of a subfloor depends on the type of an aircraft, a shape of structure, and an applied material. Therefore, the study of crashworthiness characteristics of a subfloor structure is very important work to improve the safety of an aircraft. In this study, a finite element model of a narrow body fuselage section for the 80~90 seats regional aircraft was developed and crash simulation was executed using an explicit finite element analysis. Through survey of the impact energy distribution of each structural part of a fuselage and floor-level acceleration response, the crashworthiness characteristics and performance was evaluated.

항공기 사고 시 항공기 구조물의 충돌에너지 흡수 특성은 탑승자 생존성 향상을 위해 매우 중요한 요소이다. 일반적으로 항공기의 비상착륙 시 충돌에너지는 착륙장치, 동체 하부 구조물(Subfloor), 좌석을 통해 탑승자에게 흡수/전달되며, 이 세 가지 구성품은 항공기 내추락성에 매우 중요한 구성품이다. 이 구성품들 중 동체 하부 구조물의 충돌 에너지 흡수 특성은 항공기 형식, 구조물의 형태 및 적용된 재료에 따라 결정된다. 따라서 항공기 동체 하부 구조물의 내추락 특성에 관한 연구는 항공기 안전성 향상을 위해 매우 중요한 분야이다. 본 연구에서는 상대적으로 내추락 특성이 취약한 80~90 인승급 리저널항공기 Narrow Body 동체의 내추락 유한요소 모델 구성과 외연적 유한요소해석을 통한 내추락 해석이 수행되었다. 동체 구조의 충돌에너지 흡수 및 좌석 장착점의 가속도 응답 등의 해석 결과 분석을 통해, 내추락 특성 및 성능 평가 과정을 수행하였다.

Keywords

References

  1. Todd R. Hurley, and Jill M. Vandenburg., "Small Airplane Crashworthiness Design Guide," AGATE-WP3.4-03, Simula Technologies, Inc., April 2002.
  2. Tim Brown., " CRAHVI - CRashworth -iness of Aircraft for High Velocity Impact," Aeronautics Days 2006, June. 2006.
  3. G. Olivares., "Crashworthiness of Composites - Certification by Analysis," 2011 Technical Review, National Institute for Avation Research, WCU, 2011.
  4. "14 CFR Part25," Federal Aviation Administration, Jan, 2008
  5. A. Abramowitz and Tong Vu., "Vertical Impact Response Characteristics of Four Commuter/Regional Airplane," DOT/FAA/AR-08/20, FAA, 2008.
  6. Karen E. Jackson, Edwin L. Fasanella., "Test-Analysis Correlation of a Crash Simulation of a Vertical Drop Test of a Commuter Category Aircraft," The Fourth Triennical International Fire and Cabin Safety Research Conference, FAA, 2004.
  7. Karen E. Jackson, Edwin L. Fasanella., "Best Practices for Crash Modeling and Simulation," NASA/TM-2002-211944, NASA, Oct. 2002.
  8. Abramowitz, A., Smith, T. G., Vu, T., Zvanya, J. R., "Vertical Drop Test of a Narrow-Body Transport Fuselage Section with Overhead Stowage Bins Onboard," DOT/FAA/AR-01/100, FAA, Sep. 2002.
  9. MMPDS-04 Metallic Materials design data acceptable to Government procuring or certification agencies, April 2008.