• Title/Summary/Keyword: Simulation Method

Search Result 24,280, Processing Time 0.044 seconds

Simulation of Benzene-Toluene-Xylene Plant (BTX제조공정의 모사연구)

  • 정해동
    • Journal of the Korea Society for Simulation
    • /
    • v.4 no.1
    • /
    • pp.121-130
    • /
    • 1995
  • This paper deals with modeling and simulation of an industrial benzene-toluene-xylene plant. Because the fractionation unit of benzene-toluene-xylene plant has a narrow range of boiling point and doesn't have any sidecut and side reboiler, we employed boiling point estimation method in the modeling and simulation of the plant. Soave-Redlich-Kwong equation was used in the computation of thermodynamical properties. We solved resulting nonlinear equations by using Newton-Raphson method which is known to show fast convergence. Results of simulation showed good agreement with actual plant operation data.

  • PDF

Simulation of the Flexible Moving Blocks System to Shorten Headway of Subway Trains (지하철 운전시격 단축을 위한 이동폐색 시뮬레이션)

  • 정동윤
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.2
    • /
    • pp.59-69
    • /
    • 1997
  • This paper proposes a simulation method of train control system to increase railroad transportation capacity in the Seoul Subway. Comparing with the conventional fixed block system, a new train operation method of "moving block system" shows a more capability of same railroad. A graphic simulation program is developed for application of moving block system to Seoul subway train control system. The result of the simulation program shows a shorten headway i.e. a more dense operation of trains and a higher efficiency of railroad with the suggested moving block system.

  • PDF

A HYBRID SIMULATION- ANALYTIC METHOD FOR PRODUCTION-DISTRIBUTION PLANNING (시뮬레이션과 수리모델을 이용한 생산-분배 계획)

  • 김숙한;이영해
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.04a
    • /
    • pp.57-66
    • /
    • 2000
  • Production-distribution planning is the most important part in supply chain management (SCM). To solve this planning problem, either analytic or simulation approach has been developed. However these two approaches have their own demerits in problem solving. In this paper, we propose a hybrid approach which is a specific problem solving procedure combining analytic and simulation method to solve production-distribution problems in supply chain. The machine capacity and distribution capacity constraints in the analytic model are considered as stochastic factors and adjusted by the proposed specific process according to the results from independently developed simulation model which includes general production-distribution characteristics.

  • PDF

An Estimation of The Unknown Theory Constants Using A Simulation Predictor

  • 박정수
    • Journal of the Korea Society for Simulation
    • /
    • v.2 no.1
    • /
    • pp.125-133
    • /
    • 1993
  • A statistical method is described for estimation of the unknown constants in a theory using both of the computer simulation data and the real experimental data, The best linear unbiased predictor based on a spatial linear model is fitted from the computer simulation data alone. Then nonlinear least squares estimation method is applied to the real experimental data using the fitted prediction model as if it were the true simulation model. An application to the computational nuclear fusion devices is presented, where the nonlinear least squares estimates of four transport coefficients of the theoretical nuclear fusion model are obtained.

  • PDF

A Practical Approach to Incremental Event-driven HDL Simulation (인크리멘탈 이벤트 - 구동 HDL 시뮬레이션에의 실제적 접근법)

  • Yang, Seiyang;Shim, Kyuho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.3
    • /
    • pp.73-80
    • /
    • 2014
  • In this paper, we propose an incremental simulation method in event-driven HDL simulation to reduce the simulation execution time. In general, the simulation is repeated with a series of design changes. Incremental simulation is an efficient simulation method that shortens the simulation execution time for the following simulation by using the result of previous simulation. We have observed the effectiveness of the proposed approach through the experimentation with multiple real designs.

Stochastic Project Scheduling Simulation System (SPSS III)

  • Lee Dong-Eun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.1 s.23
    • /
    • pp.73-79
    • /
    • 2005
  • This paper, introduces a Stochastic Project Scheduling Simulation system (SPSS III) developed by the author to predict a project completion probability in a certain time. The system integrates deterministic CPM, probabilistic PERT, and stochastic Discrete Event Simulation (DES) scheduling methods into one system. It implements automated statistical analysis methods for computing the minimum number of simulation runs, the significance of the difference between independent simulations, and the confidence interval for the mean project duration as well as sensitivity analysis method in What-if analyzer component. The SPSS 111 gives the several benefits to researchers in that it (1) complements PERT and Monte Carlo simulation by using stochastic activity durations via a web based JAVA simulation over the Internet, (2) provides a way to model a project network having different probability distribution functions, (3) implements statistical analyses method which enable to produce a reliable prediction of the probability of completing a project in a specified time, and (4) allows researchers to compare the outcome of CPM, PERT and DES under different variability or skewness in the activity duration data.

Numerical Simulation on Startup Transient Performance of a Centrifugal Pump

  • Chen, Gang;Shao, Jie;Wu, Yulin;Liu, Shuhong;Cao, Guangjun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.751-755
    • /
    • 2008
  • During the rapid startup transient of a centrifugal pump, in order to investigate its transient characteristics, the torque equations are deduced. Based on these equations, numerical simulation is carried out with the Large Eddy Simulation(LES) method and UDFs(User Defined Functions) are applied during the simulation. Comparison between simulation and experiment results of pump heads and rotational speed shows that they are in good agreement, indicating that the dynamic characteristics of this pump can be predicted accurate comparatively through simulation with LES method during its startup process.

  • PDF

Efficient simulation using saddlepoint approximation for aggregate losses with large frequencies

  • Cho, Jae-Rin;Ha, Hyung-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.1
    • /
    • pp.85-91
    • /
    • 2016
  • Aggregate claim amounts with a large claim frequency represent a major concern to automobile insurance companies. In this paper, we show that a new hybrid method to combine the analytical saddlepoint approximation and Monte Carlo simulation can be an efficient computational method. We provide numerical comparisons between the hybrid method and the usual Monte Carlo simulation.

A Method for Design of Discrete Variable Stochastic Systems using Simulation (이산형 변수 시스템의 설계를 위한 시뮬레이션 활용 기법 연구)

  • 박경종
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.1-16
    • /
    • 1999
  • This paper deals with a discrete simulation optimization method for designing a complex probabilistic discrete event system. The proposed algorithm in this paper searches the effective and reliable alternatives satisfying the target values of the system to be designed through a single run in a relatively short time period. It tries to estimate an autoregressive model, and construct mean and confidence interval for evaluating correctly the objective function obtained by small amount of output data. The experimental results using the proposed method are also shown.

  • PDF

The Estimation of Analytical Method for Axial Force-Moment Relationships of High-Strength Concrete Structures using Reliability Theory (신뢰성 이론을 이용한 고강도콘크리트 구조물의 축력-모멘트관계에 있어서의 해석방법에 대한 평가)

  • 최광진;장일영;송재호;홍원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.447-454
    • /
    • 1998
  • The main object of the study is that axial force-moment relationships for high strength concrete structures using reliability theory(Linear statstical method, Monte Carlo Simulation) including probability conception. And mean stress factors and centroid factors proposed to high strength concrete structures using reliability theory(Linear statstical method, Monte Carlo Simulation). Finally, The established experimental data for axial force-moment relationships are compared to the analytical data(data for Linear statstical method and Monte Carlo Simulation) for axial force-moment relationships in this analytical method.

  • PDF