• Title/Summary/Keyword: Simulation Acceleration

Search Result 945, Processing Time 0.026 seconds

Design study of the Vacuum system for RAON accelerator using MonteCarlo method

  • Kim, Jae-Hong;Jeon, Dong-O
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.70.1-70.1
    • /
    • 2015
  • The facility for RAON superconducting heavy-ion accelerator at a beam power of up to 400 kW will be produced rare isotopes with two electron cyclotron resonance (ECR) ion sources. Highly charged ions generated by the ECR ion source will be injected to a superconducting LINAC to accelerate them up to 200 MeV/u. During the acceleration of the heavy ions, a good vacuum system is required to avoid beam loss due to interaction with residual gases. Therefore ultra-high vacuum (UHV) is required to (i) limit beam losses, (ii) keep the radiation induced within safe levels, and (iii) prevent contamination of superconducting cavities by residual gas. In this work, a RAON vacuum design for all the accelerator system will be presented along with Monte Carlo simulation of vacuum levels in order to validate the vacuum hardware configuration, which is needed to meet the baseline requirements.

  • PDF

Computational Fluid Dynamics Study on Two-Dimensional Sloshing in Rectangular Tank (사각형 탱크 내에서의 2차원 슬로싱에 대한 전산유체 역학적 연구)

  • Kwack, Young-Kyun;Ko, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1142-1149
    • /
    • 2003
  • The present study describes a numerical analysis for simulation of the sloshing of flows with free-surface which contained in a rectangular tank moving in harmonic or pitching motion. The VOF function, representing the volume fraction of a cell occupied by the fluid, is calculated for each cells, which gives the location of the free-surface filling any some fraction of cells with fluid. The time-dependent changes of free-surface height are used for visualization subject to several conditions such as fluid height, horizontal acceleration, sinusoidal motion, and viscosity. The free-surface heights were used for comparing wall-force, which is caused by sloshing of flows. Damping effects by baffles were extensively investigated for various conditions in terms of baffle shape and position.

A Numerical Simulation of Projectile Aerodynamics Using a Ballistic Range (Ballistic Range를 이용한 Projectile 공기역학의 수치모사)

  • Jung S. J.;Rajesh G.;Kim H. D.;Lee J. M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.386-393
    • /
    • 2005
  • The objective of the present study is to develop a new type of the Ballistic range, called 'two-stage light gas gun'. A computational work has been performed to investigate the aerodynamics of a projectile which is launched from the two-stage light gas gun. A moving coordinate method for a multi-domain technique is employed to simulate unsteady projectile flows with a moving boundary. The effect of a virtual mass is added to the axisymmetric unsteady Euler equation systems. The computed results reasonably capture the major flow characteristics which are generated in launching the projectile supersonically, such as the interaction between the shock wave and the blast wave, the interaction between the vortical flow and the barrel shock, and the steady under-expanded jet. The present computational results properly predict the velocity, acceleration, and drag histories of the projectile.

  • PDF

A Cartesian Space Adaptive Control Scheme for Robot Manipulators (로봇 매니퓰레이터의 직교공간 적응제어 방식)

  • Hwang, Seok-Yong;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.397-400
    • /
    • 1991
  • This paper presents a cartesian space decentralized adaptive controller design for the end effector of the robot manipulator to track the given desired trajectory in the cartesian coordinate. By the cartesian based control scheme, the task related high level motion command is directly executed without solving the complex inverse kinematic equations. The controller does not require the complex manipulator dynamic model, and hence it is computationally very efficient. Each degree of freedom of the end effector on the cartesian space is controlled by a PID feedback controller and a velocity acceleration feed forward conpensation part. Simulation results for a two-link direct drive manipulator conform that the present cartesian based decentralized scheme is feasible.

  • PDF

Levitation System controlled by Output-compensation control method (출력보상형 제어기법에 의한 부상제어 시스템)

  • Sung, H.K.;Lee, J.M.;Jho, J.M.;Lee, J.M.;Yu, M.W.;Jho, H.J.;Nam, Y.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.313-315
    • /
    • 2006
  • Being controlled by a pole placement, levitation system should need many sensors that measure air-gap, velocity, acceleration, and so on. However, these sensors have observational errors by changed temperature. This paper proposed a output compensated command tracking controller for reducing the error and reducing sensors. Simulation results will be provided to show the validity of the proposed scheme.

  • PDF

Dynamic Control of Robot Manipulators Using Multilayer Neural Networks and Error Backpropagation (다층 신경회로 및 역전달 학습방법에 의한 로보트 팔의 다이나믹 제어)

  • 오세영;류연식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1306-1316
    • /
    • 1990
  • A controller using a multilayer neural network is proposed to the dynamic control of a PUMA 560 robot arm. This controller is developed based on an error back-propagation (BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a commanded feedforward torque generator. A Proportional Derivative (PD) feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the manipulator as well as the PD feedback error torque. No a priori knowledge on system dynamics is needed and this information is rather implicitly stored in the interconnection weights of the neural network. In another experiment, the neural network was trained with the current, past and future positions only without any use of velocity sensors. Form this thim window of position values, BP network implicitly filters out the velocity and acceleration components for each joint. Computer simulation demonstrates such powerful characteristics of the neurocontroller as adaptation to changing environments, robustness to sensor noise, and continuous performance improvement with self-learning.

  • PDF

CONVERGENCE ACCELERATION OF LMS ALGORITHM USING SUCCESSIVE DATA ORTHOGONALIZATION

  • Shin, Hyun-Chool;Song, Woo-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.73-76
    • /
    • 2001
  • It is well-known that the convergence rate gets worse when an input signal to an adaptive filter is correlated. In this paper we propose a new adaptive filtering algorithm that makes the convergence rate highly improved even for highly correlated input signals. By introducing an orthogonal constraint between successive input signal vectors, we overcome the slow convergence problem caused by the correlated input signal. Simulation results show that the proposed algorithm yields highly improved convergence speed and excellent tracking capability under both time-invariant and time varying environments, while keeping both computation and implementation simple.

  • PDF

Simulation of Photon Acceleration with Plasma Wake Fields (플라즈마 항적장을 이용한 광자 가속 시뮬레이션)

  • Lee, Hae-June;Kim, Guang-Hoon;Kim, Changbum;Kim, Jong-Uk;Hyyong Suk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.242-243
    • /
    • 2002
  • From the dispersion relation of an electromagnetic (EM) wave propagating through plasmas, w$\^$2/ = w$\sub$p/$\^$2/+c$\^$2/k$\^$2/ the phase velocity (w/k) of the wave is large at high density where w$\sub$p/ is large, and small at low density Therefore, when a laser pulse is located on a downward density gradient of a plasma wave, the phase velocity of the back of the pulse becomes faster than that of the front of the pulse and the pulse wavelength decreases. (omitted)

  • PDF

Evaluation and Guideline for Design of Guardrail by BARRIER Ⅶ Program (BARRIER Ⅶ 프로그램을 이용한 가아드레일의 설계평가 및 지침)

  • Woo, K. S.;Cho, S. H.;Ko, M. G.;Kim, W.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.191-198
    • /
    • 1994
  • The nonlinear dynamic behaviors of guardrail established on the local or high way have been investigated using BARRIER Ⅶ program with respect to four design variables such as section type of beams and posts, impact angle, impact velocity and vehicle weight. Computer simulation programs are sophisticated analytical models for analyzing dynamic vehicle/barrier interactions and provide a relatively inexpensive alternative to full scale crash testing. This study has been focused on the structural adequacy, occupant risk, and vehicle trajectory. For this purpose, the maximum deflection and impact force have been calculated to design the clear zone and to analyze effect of impact attenuation. Also, the acceleration of vehicle and exit angle after collision have been computed to estimate the occupant risk. From this study, it is suggested that we should strengthen the design criteria of guradrail to prevent from disastrous traffic accidents.

  • PDF

PIDA Controller Design by CDM for Control of High-Order system (고차 시스템 제어를 위한 CDM 기법을 이용한 PIDA 제어기 설계)

  • 하달영;조용성;김승철;설재훈;임영도
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.353-360
    • /
    • 2000
  • A design of PIDA(Proportional-Integral-Derivative-Acceleration) controller for the third-order plant using the CDM(Coefficient Diagram Method) is presented. Using CDM, the closed-loop system with the designed PIDA controller can be made stable and satisfied both the transient and steady state response specifications without any adjustment. The effect of output step disturbance can also be lastly rejected. The fast step response of the controlled system can be achieved by reducing the equivalent time constant. The MATLABs simulation results show that the performances of the designed controlled system using CDM is better than the performance of the controlled system using PIDA controller designed by its own technique.

  • PDF