• Title/Summary/Keyword: Simulated Soil

Search Result 677, Processing Time 0.031 seconds

Evaluation of Similitude Laws for Dissipation Velocity of Excess Pore Pressure after Liquefaction using Impulse Load Tests (충격하중시험을 이용한 액상화 후 과잉간극수압 소산속도의 상사비 연구)

  • Kim, Dong-Hwi;Ha, Ik-Soo;Hwang, Jae-Ik;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.714-721
    • /
    • 2004
  • The purpose of this study is to find out the similitude laws for dissipation velocity of excess pore pressure after liquefaction according to magnitude of input accelerations and height of model soils from the results of impulse load tests. In impulse load tests, model soils were constructed to the height of 25cm, 50cm, and 100cm in acrylic tubes whose inside diameters were 19cm and 38cm respectively, and impulse loads were applied at the bottom of each model soil to liquefy the entire model soil. Excess pore pressure distribution by depth and settlement of soil surface were measured in each test. Dissipation curves of excess pore pressure measured in each tests were simulated by solidification theory, and dissipation velocities of excess pore pressure were determined from the slope of simulated dissipation curves. From the results of impulse load tests, dissipation velocity of excess pore pressure was not affected by magnitude of input acceleration, and from this fact, dissipation process was proved to be different from dynamic phenomenon. However, dissipation velocity of excess pore pressure increased as height of model soil increased and showed little difference as diameter of model soil increased. Therefore, the similitude law for dissipation velocity could be expressed by the similitude law for model height to 0.2 without regard to the diameter of model soil.

  • PDF

Estimating Concentrations of Pesticide Residue in Soil from Pepper Plot Using the GLEAMS Model

  • Jin, So-Hyun;Yoon, Kwang-Sik;Shim, Jae-Han;Choi, Woo-Jung;Choi, Dong-Ho;Kim, Bo-Mi;Lim, Sang-Sun;Jung, Jae-Woon;Lee, Kyoung-Sook;Hong, Su-Myeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.357-366
    • /
    • 2011
  • BACKGROUND: Mathematical model such as GLEAMS have been developed and successfully applied to upland fields to estimate the level of pesticide residues in soil. But, the GLEAMS model rarely applied to the Korean conditions. METHODS AND RESULTS: To evaluate pesticide transport in soil residue using the GLEAMS model from pepper plot, Alachlor, Endosulfan, Cypermethrin and Fenvalerate were applied for standard and double rate. Soil sampling was conducted and decaying patterns of pesticides were investigated. Observed climate data such as temperature and irrigation amount were used for hydrology simulation. The observed pesticide residue data of 2008 were used for parameter calibration, and validation of GLEAMS model was conducted with observed data of 2009. After calibration, the $K_{oc}$ (Organic carbon distribution coefficient) and WSHFRC (Washoff fraction) parameters were identified as key parameters. The simulated concentrations of the pesticides except Fenvalerate were sensitive to $K_{oc}$ parameter. Overall, soil residue concentrations of Alachlor, Cypermethrin and Fenvalerate were fairly simulated compared to those of Endosulfan. The applicability of the GLEAMS model was also confirmed by statistical analysis. CONCLUSION(s): GLEAMS model was eligible for evaluation of pesticide soil residue for Alachlor, Cypermethrin and Fenvalerate.

Digital simulation model for soil erosion and Sediment Yield from Small Agricultural Watersheds(I) (농업 소류역으로부터의 토양침식 및 유사량 시산을 위한 전산모의 모델 (I))

  • 권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.108-114
    • /
    • 1980
  • A deterministic conceptual erosion model which simulates detachment, entrainment, transport and deposition of eroded soil particles by rainfall impact and flowing water is presented. Both upland and channel phases of sediment yield are incorporated into the erosion model. The algorithms for the soil erosion and sedimentation processes including land and crop management effects are taken from the literature and then solved using a digital computer. The erosion model is used in conjunction with the modified Kentucky Watershed Model which simulates the hydrologic characteristics from watershed data. The two models are linked together by using the appropriate computer code. Calibrations for both the watershed and erosion model parameters are made by comparing the simulated results with actual field measurements in the Four Mile Creek watershed near Traer, Iowa using 1976 and 1977 water year data. Two water years, 1970 and 1978 are used as test years for model verification. There is good agreement between the mean daily simulated and recorded streamflow and between the simulated and recorded suspended sediment load except few partial differences. The following conclusions were drawn from the results after testing the watershed and erosion model. 1. The watershed and erosion model is a deterministic lumped parameter model, and is capable of simulating the daily mean streamflow and suspended sediment load within a 20 percent error, when the correct watershed and erosion parameters are supplied. 2. It is found that soil erosion is sensitive to errors in simulation of occurrence and intensity of precipitation and of overland flow. Therefore, representative precipitation data and a watershed model which provides an accurate simulation of soil moisture and resulting overland flow are essential for the accurate simulation of soil erosion and subsequent sediment transport prediction. 3. Erroneous prediction of snowmelt in terms of time and magnitute in conjunction with The frozen ground could be the reason for the poor simulation of streamflow as well as sediment yield in the snowmelt period. More elaborate and accurate snowmelt submodels will greatly improve accuracy. 4. Poor simulation results can be attributed to deficiencies in erosion model and to errors in the observed data such as the recorded daily streamflow and the sediment concentration. 5. Crop management and tillage operations are two major factors that have a great effect on soil erosion simulation. The erosion model attempts to evaluate the impact of crop management and tillage effects on sediment production. These effects on sediment yield appear to be somewhat equivalent to the effect of overland flow. 6. Application and testing of the watershed and erosion model on watersheds in a variety of regions with different soils and meteorological characteristics may be recommended to verify its general applicability and to detact the deficiencies of the model. Futhermore, by further modification and expansion with additional data, the watershed and erosion model developed through this study can be used as a planning tool for watershed management and for solving agricultural non-point pollution problems.

  • PDF

Effects of Simulated Acid Rain on Above- and Below-Ground Growth of Liliodendron tulipifera L. Seedlings (인공산성비 처리가 백합나무 묘목의 지상부 및 지하부 생장에 미치는 영향)

  • Yoon, Jun-Hyuck;Lee, Do-Hyung;Woo, Kwan-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.3
    • /
    • pp.204-214
    • /
    • 2008
  • This study was conducted to analyze the influence of simulated acid rain on growth of Liliodendron tulipifera seedlings. The seedlings were treated with four levels of simulated acid rain, 5.6, 4.9, 3.9, or 2.9, and dry weight, growth of stem and root were investigated. There were statistically significant differences at 1% and 5% in the total dry weight of the above-part among the simulated acid rain treated groups with different levels of pH and different types of soil. The dry weight of the above part tended to decrease as the acidity of the simulated acid rain increases. The total dry weight of the below-part was significantly different according to the levels of acidity of the acid rain in all three soils and was shown a significant difference according to the soil types at only pH 2.9 plot. The dry weight of the below part in soils A and C decreased as the pH level decreases. The rate of stem growth was significantly different among the treatment groups of acidity of the acid rain at significance level of 0.01 and among the treatment groups of soil types at 0.01 and 0.05 levels from June to August. In all three soil types, the greatest stem growth occurred during the period of June. Moreover, stem growth was promoted at pH 3.9 plot and pH 4.9 plot whereas it was suppressed at pH 2.9 plot. Though the amount of fine roots and very fine roots in soil depth of 0-7 cm and 7-14 cm were significantly different among the treatment groups of pH level, fine root was not shown a significant difference among the pH groups in soil depth of 14-21cm. The types of soil significantly affected only on the amount of the very fine root.

Daily Streamfiow Model based on the Soil Water (유역 토양 수분 추적에 의한 유출 모형)

  • 김태일;여재경;박승기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.61-72
    • /
    • 1991
  • A lumped deterministic model(DAWAST model) was developed to predict the daily streamflow. Since the streamflow is dominantly determined by the soil water storage in the watershed, the model takes the soil water accounting procedures which are based on three linear reservoirs representing the surface, unsaturated, and saturated soil layers. The variation of soil water storage in the unsaturated zone is traced from the soil water balance on a daily basis. DAWAST model consists of 5 parameters for water balance and 3 parameters for routing. A optimization technique of unconstrained nonlinear Simplex method was applied for the determination of the optimal parameters for water balance. Model verification was carried out to the 7 hydrologic watersheds with areas of 5.89-7,126km$^2$ and the results were generally satisfactory. The daily streamflow can be arbitrarily simulated with the input data of daily rainfall and pan evaporation by the DAWAST model at the station where the observed streamflow data of short periods are available to calibrate the model parameters.

  • PDF

A Forced Vibration Analysis of Soil-Pile Interaction System (지반-말뚝 상호작용계의 강제진동해석)

  • 김민규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.136-143
    • /
    • 2001
  • In this study, a numerical analysis for soil-pile interaction systems in multi-layered half planes under a forced vibration is presented. The soil-pile interaction system is divided into two parts, so called near field and far field. The near field soil using finite elements and piles using beam elements are modeled. The far field soil media is implemented using boundary elements those can automatically satisfy the condition of wave radiation. These two fields are numerically coupled by imposing displacement compatibility condition at the interface between the near field and the far field. For the verification, the forced vibration test was simulated and the response under horizontal and vertical harmonic loads at the pile cap in the layered half plane was determined. The results are compared to the theoretical and experimental results of the literatures to verify the proposed soil-pile interaction analysis formulation.

  • PDF

THE CORRELATION ANALYSIS BETWEEN SWAT PREDICTED SOIL MOISTURE AND MODIS NDVI

  • Hong, Woo-Yong;Park, Min-Ji;Park, Jong-Yoon;Kim, Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.204-207
    • /
    • 2008
  • The purpose of this study is to identify how much the MODIS NDVI (Normalized Difference Vegetation Index) can explain the soil moisture simulated from SWAT (Soil and Water Assessment Tool) continuous hydrological model. For the application, ChungjuDam watershed (6,661.3 $km^2$) was adopted which covers land uses of 82.2 % forest, 10.3 % paddy field, and 1.8 % upland crop respectively. For the preparation of spatial soil moisture distribution, the SWAT model was calibrated and verified at two locations (watershed outlet and Yeongwol water level gauging station) of the watershed using daily streamflow data of 7 years (2000-2006). The average Nash and Sutcliffe model efficiencies for the verification at two locations were 0.83 and 0.91 respectively. The 16 days spatial correlation between MODIS NDVI and SWAT soil moisture were evaluated especially during the NDVI increasing periods for forest areas.

  • PDF

Soil foundation effect on the vibration response of concrete foundations using mathematical model

  • Dezhkam, Behzad;Yaghfoori, Ali
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.221-225
    • /
    • 2018
  • In this paper, vibration analysis of concrete foundations resting on soil medium is studied. The soil medium is simulated by Winkler model considering spring element. The concrete foundation is modeled by thick plate elements based on classical plate theory (CPT). Utilizing energy method consists of potential energy, kinetic energy and external works in conjunction with Hamilton's principle, the motion equations are derived. Assuming the simply supported boundary condition for the concrete foundation, the Navier method is used for calculating the frequency of the structure. The effect of different parameters such as soil medium, mode numbers, length to width ratio and length to thickness ratio of the concrete foundation are shown on the frequency of the structure. At the first, the results are validated with other published works in order to show the accuracy of the obtained results. The results show that considering the soil medium, the frequency of the structure increases significantly.

Prediction of Soil Deformation with Nonlinear-Anisotropic Model (비선형 이방성 모델을 이용한 흙의 변형 거동 예측)

  • 윤충구;정영훈;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.41-48
    • /
    • 2002
  • The fact that nonlinearity and anisotropy of soil should be considered for the proper estimation of soil deformation has been recongnized for a long time. In this study, a new stiffness model which can reflect both nonlinearity and anisotropy is proposed. Nonlinearity is simulated by Ramberg-Osgood model and anisotropy is modeled with the cross-anisotropic elasticity. Analysis results with the developed model compared with those from analyses using linear isotropic model, linear anisotropic model, and nonlinear isotropic model. In the triaxial compression like condition, the effects of nonlinearity on the vertical strain are significant, but soil anisotropy does not affect the vertical strain. In 1-dimensional deformation condition, however, both nonlinearity and anisotropy of soil influence the final magnitude of the vertical strain. Also the increase of poisson's ratio magnifies the effect of anisotropy on the vertical strain in this condition.

  • PDF

Centrifuge shaking table tests on a friction pendulum bearing isolated structure with a pile foundation in soft soil

  • Shu-Sheng, Qu;Yu, Chen;Yang, Lv
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.517-526
    • /
    • 2022
  • Previous studies have shown that pile-soil interactions have significant influences on the isolation efficiency of an isolated structure. However, most of the existing tests were carried out using a 1-g shaking table, which cannot reproduce the soil stresses resulting in distortion of the simulated pile-soil interactions. In this study, a centrifuge shaking table modelling of the seismic responses of a friction pendulum bearing isolated structure with a pile foundation under earthquakes were conducted. The pile foundation structure was designed and constructed with a scale factor of 1:100. Two layers of the foundation soil, i.e., the bottom layer was made of plaster and the upper layer was normal soil, were carefully prepared to meet the similitude requirement. Seismic responses, including strains, displacement, acceleration, and soil pressure were collected. The settlement of the soil, sliding of the isolator, dynamic amplification factor and bending moment of the piles were analysed to reveal the influence of the soil structure interaction on the seismic performance of the structure. It is found that the soil rotates significantly under earthquake motions and the peak rotation is about 0.021 degree under 24.0 g motions. The isolator cannot return to the initial position after the tests because of the unrecoverable deformation of the soil and the friction between the curved surface of the slider and the concave plate.