• Title/Summary/Keyword: Simulated Data

Search Result 3,916, Processing Time 0.032 seconds

Detailed Investigation on the Dynamic Excess Pore Water Pressure through Liquefaction Tests using Various Dynamic Loadings (다양한 진동하중의 액상화 시험을 통한 동적 과잉간극수압에 대한 상세분석)

  • Choi, Jae-Soon;Jang, Seo-Yong;Kim, Soo-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.81-94
    • /
    • 2007
  • In most experimental researches on the liquefaction phenomenon, an earthquake as a random vibration has been regraded as a sinusoidal wave or a triangular wave with an equivalent amplitude. Together with the development in the part of signal control and data acquisition, dynamic experimental equipments in the soil dynamics have also developed rapidly and further more, several real earthquakes have been simulated in the large model test such as shaking table tests and centrifuge tests. In Korea, several elementary laboratory tests to simulate the real earthquake load were performed. From these test results, it was reported that the sinusoidal wave cannot reliably reflect the soil dynamic behavior under the real earthquake motion. In this study, 4 types of dynamic motions such as the sinusoidal wave, the triangular wave, the incremental triangular wave and several real earthquake motions which were classified with shock-type and vibration-type were loaded to find something new to explain the change of the excess pore water pressure under the real earthquake load. Through the detailed investigation and comparison on all test results, it is found that the dynamic flow is generated by the soil plastic deformation and the velocity head of dynamic flow is changed the pressure head in the un-drained condition. It can be concluded that the change of the excess pore water pressure is related to the pressure head of dynamic flow. Lastly, a new hypothesis to explain such a liquefaction initiation phenomenon under the real earthquake load is also proposed and verified.

Introduction of Discrete Event Simulation and Its Application to Railway Maintenance System (Discrete Event Simulation의 차량 유지보수체계의 적용을 통한 유지보수 효율향상 연구)

  • Mun Hyung Suk;Jang Chang Doo;Ha Yun Sok;Cho Young Chun
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.48-57
    • /
    • 2005
  • A lot of manufacturing knowledge and method have applied to increase manufacturing efficiency in industry field. DES(Discrete Event Simulation) is one of solution to deal with manufacturing problems in factory. Beginning of research, old maintenance system of KNR ( Korea National Railroad) and its technical problems are basically investigated. KNR has maintained railway vehicle with their own solution based on experience. Very advanced railway vehicles such as KTX (Korea Train Express) and TTX(Tilting Train Express) will be difficult to maintain with their old maintenance method. In order to apply knowledge of DES, maintenance field of railway must be considered. Imaginary maintenance machine are selected to variable of DES. Maintenance capability of each machine will be evaluated base on imaginary data from imaginary machine. The machine could be very expensive as well as difficult to replace. Target of research is minimization of number of machine in railway workshop. So basic knowledge of discrete event simulation is introduced. Then five essential stages of discrete event simulation are provided. Each maintenance case defined as event. Each event is discrete and simulated base on different case such as one maintenance line with one machine and one maintenance line with two machines in railway workshop. simple maintenance method, discrete event simulation, will be come out very powerful in complicate maintenance system and will be helpful to reduce maintenance cost as well as maintenance labor.

  • PDF

Salinity Effects on the Hydraulic Conductivity of Uplands (밭토양(土壌)의 수리전도도(水理伝導度)에 대(対)한 염류효과(塩類効果))

  • Park, Chang-Seo;O'Connor, George A.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 1983
  • Laboratory determinations of saturated hydraulic conductivity were conducted with four soils varying in texture from sand to clay and with five waters with different salinity level. The waters varied in total dissolved solids from 1,250 to $15,000mg/{\ell}$ and in SAR from 16 to 57 and were representative of saline waters in New Mexico. Saturated hydraulic conductivities of the soils were not significantly affected by water salinity if these waters were the sole source of irrigation water. However, small additions of distilled water, assuming simulated to rain, to soils previously equilibrated with the saline waters significantly decreased soil permeability. Dispersion and short or long-distance transport of clay apparently clogged conducting pores when distilled water was introduced. Swelling was an important mechanism in reducing soil permeability only in the clay soil. The data suggest that, when saline water is the dominant irrigation source and is supplemented by rain, (1) all saline waters could be used on very sandy soils, (2) no saline waters should be used on very heavy soils, and (3) slightly saline, but not very saline, waters could be used on medium-textured soils.

  • PDF

Gait Phase Recognition based on EMG Signal for Stairs Ascending and Stairs Descending (상·하향 계단보행을 위한 근전도 신호 기반 보행단계 인식)

  • Lee, Mi-Ran;Ryu, Jae-Hwan;Kim, Sang-Ho;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.181-189
    • /
    • 2015
  • Powered prosthesis is used to assist walking of people with an amputated lower limb and/or weak leg strength. The accurate gait phase classification is indispensable in smooth movement control of the powered prosthesis. In previous gait phase classification using physical sensors, there is limitation that powered prosthesis should be simulated as same as the speed of training process. Therefore, we propose EMG signal based gait phase recognition method to classify stairs ascending and stairs descending into four steps without using physical sensors, respectively. RMS, VAR, MAV, SSC, ZC, WAMP features are extracted from EMG signal data and LDA(Linear Discriminant Analysis) classifier is used. In the training process, the AHRS sensor produces various ranges of walking steps according to the change of knee angles. The experimental results show that the average accuracies of the proposed method are about 85.6% in stairs ascending and 69.5% in stairs descending whereas those of preliminary studies are about 58.5% in stairs ascending and 35.3% in stairs descending. In addition, we can analyze the average recognition ratio of each gait step with respect to the individual muscle.

The Design of Multi-channel Asynchronous Communication IC Using FPGA (FPGA를 이용한 다채널 비동기 통신용 IC 설계)

  • Ock, Seung-Kyu;Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.28-37
    • /
    • 2010
  • In this paper, the IC (Integrated Circuit) for multi-channel asynchronous communication was designed by using FPGA and VHDL language. The existing chips for asynchronous communication that has been used commercially are composed of one to two channels. Therefore, when communication system with two channels or more is made, the cost becomes high and it becomes complicated for communication system to be realized and also has very little buffer, load that is placed into Microprocessor increases heavily in case of high speed communication or transmission of high-capacity data. The designed IC was improved the function and performance of communication system and reduced costs by designing 8 asynchronous communication channels with only one IC, and it has the size of transmitter/receiver buffer with 256 bytes respectively and consequently high speed communication became possible. To detect errors between communications, it was designed with digital filter and check-sum logic and channel MUX logic so that the malfunction can be prevented and errors can be detected more easily and input/output port regarding each communication channel can be used flexibly and consequently the reliability of system was improved. It was composed and simulated logic of VHDL described by using Cyclone II Series EP2C35F672C8 and QuartusII V8.1 of ALTERA company. In order to show the performance of designed IC, the test was conducted successfully in QuartusII simulation and experiment and the excellency was compared with TL16C550A of TI (Texas Instrument) company and ATmegal28 general-purpose micro controller of ATMEL company that are used widely as chips for asynchronous communication.

High Noise Margin LVDS I/O Circuits for Highly Parallel I/O Environments (다수의 병렬 입.출력 환경을 위한 높은 노이즈 마진을 갖는 LVDS I/O 회로)

  • Kim, Dong-Gu;Kim, Sam-Dong;Hwang, In-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.85-93
    • /
    • 2007
  • This paper presents new LVDS I/O circuits with a high noise margin for use in highly parallel I/O environments. The proposed LVDS I/O includes transmitter and receiver parts. The transmitter circuits consist of a differential phase splitter and a output stage with common mode feedback(CMFB). The differential phase splitter generates a pair of differential signals which have a balanced duty cycle and $180^{\circ}$ phase difference over a wide supply voltage variation due to SSO(simultaneous switching output) noises. The CMFB output stage produces the required constant output current and maintains the required VCM(common mode voltage) within ${\pm}$0.1V tolerance without external circuits in a SSO environment. The proposed receiver circuits in this paper utilizes a three-stage structure(single-ended differential amp., common source amp., output stage) to accurately receive high-speed signals. The receiver part employs a very wide common mode input range differential amplifier(VCDA). As a result, the receiver improves the immunities for the common mode noise and for the supply voltage difference, represented by Vgdp, between the transmitter and receiver sides. Also, the receiver produces a rail-to-rail, full swing output voltage with a balanced duty cycle(50% ${\pm}$ 3%) without external circuits in a SSO environment, which enables correct data recovery. The proposed LVDS I/O circuits have been designed and simulated with 0.18um TSMC library using H-SPICE.

The Effect of Uncertainty in Roughness and Discharge on Flood Inundation Mapping (조도계수와 유량의 불확실성이 홍수범람도 구축에 미치는 영향)

  • Jung, Younghun;Yeo, Kyu Dong;Kim, Soo Young;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.937-945
    • /
    • 2013
  • The accuracy of flood inundation maps is determined by the uncertainty propagated from all variables involved in the overall process including input data, model parameters and modeling approaches. This study investigated the uncertainty arising from key variables (flow condition and Manning's n) among model variables in flood inundation mapping for the Missouri River near Boonville, Missouri, USA. Methodology of this study involves the generalized likelihood uncertainty estimation (GLUE) to quantify the uncertainty bounds of flood inundation area. Uncertainty bounds in the GLUE procedure are evaluated by selecting two likelihood functions, which is two statistic (inverse of sum of squared error (1/SAE) and inverse of sum of absolute error (1/SSE)) based on an observed water surface elevation and simulated water surface elevations. The results from GLUE show that likelihood measure based on 1/SSE is more sensitive on observation than likelihood measure based on 1/SAE, and that the uncertainty propagated from two variables produces an uncertainty bound of about 2% in the inundation area compared to observed inundation. Based on the results obtained form this study, it is expected that this study will be useful to identify the characteristic of flood.

Verification of the Correlation between Progression-free Survival and Overall Survival Considering Magnitudes of Survival Post-progression in the Treatment of Four Types of Cancer

  • Liu, Li-Ya;Yu, Hao;Bai, Jian-Ling;Zeng, Ping;Miao, Dan-Dan;Chen, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1001-1006
    • /
    • 2015
  • Background: With development and application of new and effective anti-cancer drugs, the median survival post-progression (SPP) is often prolonged, and the role of the median SPP on surrogacy performance should be considered. To evaluate the impact of the median SPP on the correlation between progression-free survival (PFS) and overall survival (OS), we performed simulations for treatment of four types of cancer, advanced gastric cancer (AGC), metastatic colorectal cancer (MCC), glioblastoma (GBM), and advanced non-small-cell lung cancer (ANSCLC). Materials and Methods: The effects of the median SPP on the statistical properties of OS and the correlation between PFS and OS were assessed. Further, comparisons were made between the surrogacy performance based on real data from meta-analyses and simulation results with similar scenarios. Results: The probability of a significant gain in OS and HR for OS was decreased by an increase of the SPP/OS ratio or by a decrease of observed treatment benefit for PFS. Similarly, for each of the four types of cancer, the correlation between PFS and OS was reduced as the median SPP increased from 2 to 12 months. Except for ANSCLC, for which the median SPP was equal to the true value, the simulated correlation between PFS and OS was consistent with the values derived from meta-analyses for the other three kinds of cancer. Further, for these three types of cancer, when the median SPP was controlled at a designated level (i.e., < 4 months for AGC, < 12 months for MCC, and <6 months for GBM), the correlation between PFS and OS was strong; and the power of OS reached 34.9% at the minimum. Conclusions: PFS is an acceptable surrogate endpoint for OS under the condition of controlling SPPs for AGC, MCC, and GBM at their limit levels; a similar conclusion cannot be made for ANSCLC.

Impact of Changes in Climate and Land Use/Land Cover Change Under Climate Change Scenario on Streamflow in the Basin (기후변화 시나리오하의 기후 및 토지피복 변화가 유역 내 유출량에 미치는 영향 분석)

  • Kim, Jin Soo;Choi, Chul Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • This study is intended to predict variations in future land use/land cover(LULC) based on the representation concentration pathway(RCP) storyline that is a new climate change scenario and to analyze how future climate and LULC changes under RCP scenario affects streamflow in the basin. This study used climate data under RCP 4.5 and 8.5 and LULC change scenario is created by a model that is developed using storyline of RCP 4.5 and 8.5 and logistic regression(LR). Two scenarios(climate change only and LULC change only) were established. The streamflow in future periods under these scenarios was simulated by the Soil and Water Assessment Tool(SWAT) model. Each scenario showed a significant seasonal variations in streamflow. Climate change showed that it reduced streamflow in summer and autumn while it increased streamflow in spring and winter. Although LULC change little affected streamflow in the basin, the pattern for increasing and decreasing streamflow during wet and dry climate condition was significant. Therefore, it's believed that sustainable water resource policies for flood and drought depending on future LULC are required.

Projection of 21st Century Climate over Korean Peninsula: Temperature and Precipitation Simulated by WRFV3.4 Based on RCP4.5 and 8.5 Scenarios (21세기 한반도 기후변화 전망: WRF를 이용한 RCP 4.5와 8.5 시나리오 기온과 강수)

  • Ahn, Joong-Bae;Choi, Yeon-Woo;Jo, Sera;Hong, Ja-Young
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.541-554
    • /
    • 2014
  • Historical, RCP4.5 and RCP8.5 scenarios from HadGEM2-AO are dynamically downscaled over the northeast East Asia with WRFV3.4. The horizontal resolution of the produced data is 12.5 km and the periods of integration are 1979~2010 for historical and 2019~2100 for both RCP4.5 and RCP8.5. We analyze the time series, climatology, EOF and extreme climate in terms of 2 m-temperature and precipitation during 30-year for the Historical (1981~2010) and RCP4.5 and RCP8.5 (2071~2100) scenarios. According to the result, the temperature of the northeast Asia centered at the Korean Peninsula increase 2.9 and $4.6^{\circ}C$ in the RCP4.5 and RCP8.5 scenarios, respectively, by the end of the 21st century. The temperature increases with latitude and the increase is larger in winter rather than in summer. The annual mean precipitation is expected to increase by about $0.3mm\;day^{-1}$ in RCP4.5 scenario and $0.5mm\;day^{-1}$ in RCP8.5 scenario. The EOF analysis is also performed for both temperature and precipitation. For temperature, the EOF $1^{st}$ modes of all scenarios in summer and winter show that temperature increase with latitude. The $2^{nd}$ mode of EOF of each scenario shows the natural variability, exclusive of the global warming. The summer precipitation over the Korean Peninsula projected increases in EOF $1^{st}$ modes of all scenarios. For extreme climate, the increment of the number of days with daily maximum temperature above $30^{\circ}C$ per year ($DAY_{TX30}$) is 25.3 and 49.7 days in RCP4.5 and RCP8.5 respectively over the Korean Peninsula. The number of days with daily precipitation above $20mm\;day^{-1}$ per year ($DAY_{PR20}$) also increases 3.1 and 3.5 days in RCP4.5 and RCP8.5 respectively.