Value at Risk(VaR) is being widely used as a simple tool for measuring financial risk. Although VaR has a few weak points, it is used as a basic risk measure due to its simplicity and easiness of understanding. However, it becomes very difficult to estimate the volatility of the portfolio (essential to compute its VaR) when the number of assets in the portfolio is large. In this case, we can consider the application of a dimension reduction technique; however, the ordinary factor analysis cannot be applied directly to financial data due to autocorrelation. In this paper, we suggest a dimension reduction method that uses the time-series factor analysis and DCC(Dynamic Conditional Correlation) GARCH model. We also compare the method using time-series factor analysis with the existing method using ordinary factor analysis by backtesting the VaR of real data from the Korean stock market.
Communications for Statistical Applications and Methods
/
v.17
no.1
/
pp.27-37
/
2010
This article concerns the forecasting in binomial AR(p) models which is proposed by Wei$\ss$ (2009b) for time series of binomial counts. Our method extends to binomial AR(p) models a recent result by Jung and Tremayne (2006) for integer-valued autoregressive model of second order, INAR(2), with simple Poisson innovations. Forecasts are produced by conditional median which gives 'coherent' forecasts, and we estimate the forecast distributions of future values of binomial AR(p) models by means of a Monte Carlo method allowing for parameter uncertainty. Model parameters are estimated by the method of moments and estimated standard errors are calculated by means of block of block bootstrap. The method is fitted to log data set used in Wei$\ss$ (2009b).
This study predicts the future world seaborne trade volume with econometrics methods using 23-year time series data provided by Clarksons. For this purpose, this study uses simple regression analysis, exponential smoothing method and seemingly unrelated regression model (SUR Model). This study is meaningful in that it predicts worldwide total seaborne trade volume and seaborne traffic in four major items (container, bulk, crude oil, and LNG) from 2019 to 2023 as there are few prior studies that predict future seaborne traffic using recent data. It is expected that more useful references can be provided to trade related workers if the analysis period was increased and additional variables could be included in future studies.
현재의 항공사 기내식 수요예측 시스템으로는 항공기 운항의 지연이나 초과 주문으로 인한 손실 문제를 해결하기 힘든 것으로 알려져 있다. 이러한 문제를 해결하기 위해 본 연구에서는 항공기 기내식 시계열 자료만을 입력변수로 사용한 단순인공신경망모형(simple neural network model), 단순인공신경망모형에 전통적인 시계열 기법(본 연구에서는 지수 평활법)의 예측 결과를 입력변수로 추가한 혼합인공신경망모형(hybrid neural network model), 그리고 혼합인공신경 망 모형에 상관관계가 높은 다른 시계열 자료(본 논문에서는 유사 노선의 다른 항공기 기내식 시계열 자료)를 인공신경망의 입력변수로 추가시킨 하이퍼혼합인공신경망모형(hyper hybrid neural network model)을 새로운 항공기 기내식 수요예측 기법으로 제안하고, 이들 모형의 예측력을 비교 분석하였다. 분석 결과 하이퍼혼합인공신경망 모형의 예측력이 가장 우수한 것으로 나타나, 인공신경 망을 기반으로 한 수요예측에 있어 상관관계가 높은 다른 시계열 자료를 입력변수로 추가함으로써 인공신경망모형의 예측력을 개선시킬 수 있음을 알 수 있었다
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.7
no.1
/
pp.42-51
/
1995
In order to establish a theoretical basis for the analyses of transient behaviors in stratified thermal storage tanks, analytical approaches to an improved one-dimensional model are made. In the present model the storage tank is treated as a finite region with an adiabatic tank exit, whereas it has been considered as a simple semi-infinite region previously. Application of the Laplace transformation and the Inversion theorem to the governing equations makes it possible to obtain an exact infinite-series solution, which is convergent only at sufficiently large time. Accordingly a complementary solution which is available for short times, i.e., the time range of this study is sought by an approximate method. The approximate solution which is rigorously validated through the examination of neglected terms in the solution procedure agrees quite well with the exact one. Moreover, it is simpler to use and more convenient to interpret the physical meaning of the solution. Comparison of the present solution with the previous ones shows relatively large difference near the tank bottom, which results from the more realistic boundary condition adopted in the present model. Some representative results by the approximate solution including effects of the Peclet number on temperature distrbutions are illustrated to show the utility of this study. In consequence, it is expected that the present results based on the improved model replace the foregoing ones as a new theoretical reference for studies of thermal stratification fields.
Focusing on the idea that the equation of exponential smoothing method (ESM) is equivalent to (1, 1) order ARMA model equation, new method of estimation of smoothing constant in exponential smoothing method is proposed before by us which satisfies minimum variance of forecasting error. Theoretical solution was derived in a simple way. Mere application of ESM does not make good forecasting accuracy for the time series which has non-linear trend and/or trend by month. A new method to cope with this issue is required. In this paper, combining the trend removal method with this method, we aim to improve forecasting accuracy. An approach to this method is executed in the following method. Trend removal by a linear function is applied to the original shipping data of consumer goods. The combination of linear and non-linear function is also introduced in trend removal. For the comparison, monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful especially for the time series that has stable characteristics and has rather strong seasonal trend and also the case that has non-linear trend. The effectiveness of this method should be examined in various cases.
Transactions of the Korean Society of Automotive Engineers
/
v.18
no.1
/
pp.66-73
/
2010
This work was focused on the material parameter extraction for the isothermal cyclic deformation analysis for which Chaboche(Combined Nonlinear Isotropic and Kinematic Hardening) and Overlay(Multi Linear Hardening) models are normally used. In this study all the parameters were driven especially based on Overlay theories. A simple method is suggested to find out best material parameters for the cyclic deformation analysis prior to the isothermal LCF(Low Cycle Fatigue) analysis. The parameter extraction was done using 400 series stainless steel data which were published in the reference papers. For simple and quick review of the parameters extracted by suggested method, 1D FORTRAN program was developed, and this program could reduce the time for checking the material data tremendously. For the application to FE code ABAQUS user subroutine for the material models was developed by means of UMAT(User Material Subroutine), and the stabilized hysteresis loops obtained by the numerical analysis were in good harmony with test results.
On April 1, 2004, KTX (Korea Train eXpress), the first HSR (High-Speed Rail) in Korea, was introduced to Gyeongbu Line. The introduction of the KTX service led to a change in the number of passengers for Gyeongbu Line. Previous studies have analyzed the pre and post-event changes of the intervening events by either simple statistics or intervention ARIMA analysis. However, the intervention ARIMA model has a limitation that several assumptions such as the occurrence time and the type of intervention events are necessary. To this end, this study analyzed the effects of intervention event on the number of passengers using the Gyeongbu line based on a time series outlier detection technique which can overcome limitations in the previous studies. The time series outlier detection technique can analyze the time, effect type and size of an intervention event without the assumption of the time and effect type of the intervention event. The data were collected from the Korea Transport Database (KTDB) for twelve years from 2003 to 2014 (144 months). The analysis results showed that the size of the influence type in the same intervention events was different across the major city routes, and the intervention event which could not be found by previous study methods was also found.
This paper presents a distributed maximum power point tracking (DMPPT) algorithm based on the reference voltage perturbation (RVP) method for the PV modules of a series PV string. The proposed RVP-DMPPT algorithm is developed to accurately track the maximum power point (MPP) for each PV module operating under all atmospheric conditions with a reduced hardware overhead. To study the influence of parameters such as the controller reference voltage ($V_{ref}$) and PV current ($I_{pv}$) on the PV string voltage, a small signal model of a unidirectional differential power processing (DPP) based PV-Bus architecture is developed. The steady state and dynamic performances of the proposed RVP DMPPT algorithm and small signal model of the unidirectional DPP based PV-Bus architecture are demonstrated with simulations and experimental results. The accuracy of the RVP DMPPT algorithm is demonstrated by obtaining a tracking efficiency of 99.4% from the experiment.
This study presents a change-point in the 30 years (1976-2005) time series of the annual and the heavy precipitation characteristics (amount, days and intensity) averaged over South Korea using Bayesian approach. The criterion for the heavy precipitation used in this study is 80 mm/day. Using non-informative priors, the exact Bayes estimators of parameters and unknown change-point are obtained. Also, the posterior probability and 90% highest posterior density credible intervals for the mean differences between before and after the change-point are examined. The results show that a single change-point in the precipitation intensity and the heavy precipitation characteristics has occurred around 1996. As the results, the precipitation intensity and heavy precipitation characteristics have clearly increased after the change-point. However, the annual precipitation amount and days show a statistically insignificant single change-point model. These results are consistent with earlier works based on a simple linear regression model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.