• Title/Summary/Keyword: Simple Beam

Search Result 1,065, Processing Time 0.019 seconds

Wave propagation in functionally graded beams using various higher-order shear deformation beams theories

  • Hadji, Lazreg;Zouatnia, Nafissa;Kassoul, Amar
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.143-149
    • /
    • 2017
  • In this work, various higher-order shear deformation beam theories for wave propagation in functionally graded beams are developed. The material properties of FG beam are assumed graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, the governing equations of the wave propagation in the FG beam are derived by using the Hamilton's principle. The analytic dispersion relations of the FG beam are obtained by solving an eigenvalue problem. The effects of the volume fraction distributions on wave propagation of functionally graded beam are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

Dynamics of an elastic beam and a jumping oscillator moving in the longitudinal direction of the beam

  • Baeza, Luis;Ouyang, Huajiang
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.369-382
    • /
    • 2008
  • An oscillator of two lumped masses linked through a vertical spring moves forward in the horizontal direction, initially at a certain height, over a horizontal Euler beam and descends on it due to its own weight. Vibration of the beam and the oscillator is excited at the onset of the ensuing impact. The impact produced by the descending oscillator is assumed to be either perfectly elastic or perfectly plastic. If the impact is perfectly elastic, the oscillator bounces off and hits the beam a number of times as it moves forward in the longitudinal direction of the beam, exchanging its dynamics with that of the beam. If the impact is perfectly plastic, the oscillator (initially) sticks to the beam after its first impact and then may separate and reattach to the beam as it moves along the beam. Further events of separation and reattachment may follow. This interesting and seemingly simple dynamic problem actually displays rather complicated dynamic behaviour and has never been studied in the past. It is found through simulated numerical examples that multiple events of separation and impact can take place for both perfectly elastic impact and perfectly plastic impact (though more of these in the case of perfectly elastic impact) and the dynamic response of the oscillator and the beam looks noisy when there is an event of impact because impact excites higher-frequency components. For the perfectly plastic impact, the oscillator can experience multiple events of consecutive separation from the beam and subsequent reattachment to it.

Pushover Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 푸쉬오버해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.517-524
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint and the vertical distribution of lateral load are evaluated considering higher modes on the response of RC OMRF using the pushover analysis. A structure used for the analysis was a 5-story structure located at site class SB and seismic design category C, which was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was identified using fiber model. Also, bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship for the joint. The results of pushover analysis showed that, although the rigid beam-column joint overestimated the stiffness and strength of the structure, the inelastic shear behavior of beam-column joint could be neglected in the process of structural design since the average response modification factor satisfied the criteria of KBC2009 for RC OMRF independent to inelastic behavior of joint.

Behavior of Concrete-Filled Square Steel Tubular Column-H Beam Connections with Plates (강판보강 콘크리트충전 각형강관 기둥-H형강보 접합부의 거동)

  • Yoo, Yeong Chan;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.161-175
    • /
    • 1998
  • The objective of this study is to investigate the structural behavior of Concrete-Filled Steel Tubular Column-H Beam connections with plate stiffeners. The first, we made experiment on the Column to H-beam flange connections stiffened with simple tensile loading. The paramaters of tensile experiment are the area of each plates. The simple tensile experiment is conducted to 5 kinds of specimens. Eestimating the load, displacement, and strain from each kind, we compared them with results of second experiment. The second, we made experiment on the Column to H-beam connections stiffened with the sames under monotonic and cyclic load. we made specimens of 5 for the second experiment. In analysis, comparing each strengthes and stiffnesses we estimated deformation capacity. Comparing and estimating each yielding strength ratios and maxium-strength ratios on the basis of Yield line theory, we suggested new Strength Formula of Beam-to-Column Connections.

  • PDF

Elasto-plastic behaviour of joint by inserting length of H-beam and structural laminated timber (H형강과 구조용집성재의 삽입길이에 따른 접합부의 탄소성 거동)

  • Kim, Soon Chul;Yang, Il Seung;Moon, Youn Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.251-259
    • /
    • 2006
  • In some cases, wooden structures are used for medium-rise buildings. It is therefore necessary to develop and test a new structural system for medium-rise buildings using wooden structures. This study deals with high-performance, laminated, timber-based composite members, which consist of structural laminated timber and H-beam. Simple beam tests were performed to determine the strength, stress distributions, and failure patterns of laminated timber. The main parameters are the insertinglength (1, 1.5, and 2 times the H-beam height) and the epoxy between the top/bottom flange of the H-beam and the top/bottom flange of the laminated timber. The results of the test show that the specimen with an inserting length that is 2 times the H-beam height was characterized by fairly god strength and stiffness.

Analytical Modeling for Two-story Two-span Reinforced Concrete Frames with Relaxed Section Details

  • Kim, Taewan;Chu, Yurim;Park, Hong-Gun
    • Architectural research
    • /
    • v.20 no.2
    • /
    • pp.53-64
    • /
    • 2018
  • A nonlinear analytical model has been proposed for two-span two-story reinforced concrete frames with relaxed section details. The analytical model is composed of beam, column, and beam-column joint elements. The goal of this study is to develop a simple and light nonlinear model for two-dimensional reinforced concrete frames since research in earthquake engineering is usually involved in a large number of nonlinear dynamic analyses. Therefore, all the nonlinear behaviors are modeled to be concentrated on flexural plastic hinges at the end of beams and columns, and the center of beam-column joints. The envelope curve and hysteretic rule of the nonlinear model for each element are determined based on experimental results, not theoretical approach. The simple and light proposed model can simulate the experimental results well enough for nonlinear analyses in earthquake engineering. Consequently, the proposed model will make it easy to developing a nonlinear model of the entire frame and help to save time to operate nonlinear analyses.

The Improved Power Supply for APD and Efficiently Designed Cylindric Micro-lens for a Wireless Optical Transmission System (무선 광 전송용 APD 전력 공급기와 원통형 레이저형상 보정용 마이크로 렌즈 기술)

  • KIM, MAN HO
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.11
    • /
    • pp.654-659
    • /
    • 2005
  • An improved power supply for APD(Avalanche Photo Diode) with a received optical power monitoring circuit allows the received optical power increase temporary without of the degradation of the electrical signal. For the cost reduction and simple fabrication, an improved power supply has been proposed that it was designed for driving a APD as a receiving device of a wireless optical transmission system. It was demonstrated that it was possible to improve a dynamic range by compensating the temperature coefficient of the APD up to 1.0 V/$^{\circ}C$ through the power supply. Also, for an efficient transmission at the receiver end, a simple structure of a single cylindrical micro-lens configuration was used in conjunction with the laser diode to partially compensate a laser beam ellipticity. For this purpose, an astigmatism introduced by the micro-lens is utilized for the additional compensation of the beam ellipticity at the receiver end. In this paper, it is demonstrated that an efficient beam shaping is realized by using the proposed configuration consisting of the single lens attached to the laser diode.

The Theoretical Study of Absorbed Dose Distributions in Water Phantom Irradiated by High Energy Photon Beam (물팬톰에 조사된 고에너지 광자선의 선량 분포 특성에 관한 이론적 고찰)

  • 최동락;이명자
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.75-84
    • /
    • 1990
  • We have claculated the absorbed dose distributions in water phantom irradiated by high energy photon beam. PDD (Percent Depth Dose) and Beam Profile can be represented by functions of depths and distances by using one dimensional model model based on transport theory. The parameters on scattering and absorption are evaluated by using non-linear regression process method. The values neeessary for calculation are obtained by simple experiment. The calculated values are in good agreement with the measured values.

  • PDF

Analysis of Nonlinear Forced Vibrations by Ritz Vectors for a Stepped Beam (Ritz벡터를 이용한 변단면 보의 비선형 강제진동 해석)

  • 심재수;박명균
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.99-105
    • /
    • 1993
  • A Stepped beam with immovable ends under forced vibrations with large amplitude is investigated by using the finite element method and the Ritz vectors. Unlike the Eigen vectors, the Ritz vectors are generated by a simple recurrence relation. Moreover the Ritz vectors yield much faster convergence with respect to the number of vectors used than the use of Eigen vectors. The computer program is developed for nonlinear analysis using Ritz vectors instead of Eigen vectors and numerical examples are analysed for deflections and natural frequencies of stepped beam under various support conditions. Results show that the proposed method is valid and efficient.

  • PDF

A Gaussian Beam Light Distribution Model of the Biological Tissue (생체의 가우스빔 광분포모델)

  • 조진호;하영호;이건일
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.6
    • /
    • pp.654-662
    • /
    • 1988
  • A simple and useful model of light distribution for the biologhical tissue to the Gaussian beam is proposed. This model assumes that the incident Gaussian beam broadens into two Gaussian beams, travelling in the opposite directions as the result of both isotropic scattering and absorption in the tissue. With this assumption, two-dimensional light intensity of each flux as well as the equations of both absorption and scattering have been derived, and the validity of modeling has been confirmed experimentally. Consequently, the results paved a way for easy evaluation of the light distribution in the biological tissue.

  • PDF