• Title/Summary/Keyword: Similarity calculation

Search Result 208, Processing Time 0.026 seconds

Verification and Analysis of the Influence of Hangul Stroke Elements by Character Size for Font Similarity (글꼴 유사도 판단을 위한 한글 형태소의 글자 크기별 영향력 검증 및 분석)

  • Yoon, Ji-Ae;Song, Yoo-Jeong;Jeon, Ja-Yeon;Ahn, Byung-Hak;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1059-1068
    • /
    • 2022
  • Recently, research using image-based deep learning is being conducted to determine similar fonts or recommend fonts. In order to increase the accuracy in judging the similarity of Hangul fonts, a previous study was conducted to calculate the similarity according to the combination of stroke elements. In this study, we tried to solve this problem by designing an integrated model that reflects the weights for each stroke element. By comparing the results of the user's font similarity calculation conducted in the previous study and the weighted model, it was confirmed that there was no difference in the ranking of the influence of the stroke elements. However, as a result of comparison by letter sizes, it was confirmed that there was a difference in the ranking of the influence of stroke elements. Accordingly, we proposed a weighted model set separately for each font size.

Automatic Inter-Phoneme Similarity Calculation Method Using PAM Matrix Model (PAM 행렬 모델을 이용한 음소 간 유사도 자동 계산 기법)

  • Kim, Sung-Hwan;Cho, Hwan-Gue
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.34-43
    • /
    • 2012
  • Determining the similarity between two strings can be applied various area such as information retrieval, spell checker and spam filtering. Similarity calculation between Korean strings based on dynamic programming methods firstly requires a definition of the similarity between phonemes. However, existing methods have a limitation that they use manually set similarity scores. In this paper, we propose a method to automatically calculate inter-phoneme similarity from a given set of variant words using a PAM-like probabilistic model. Our proposed method first finds the pairs of similar words from a given word set, and derives derivation rules from text alignment results among the similar word pairs. Then, similarity scores are calculated from the frequencies of variations between different phonemes. As an experimental result, we show an improvement of 10.1%~14.1% and 8.1%~11.8% in terms of sensitivity compared with the simple match-mismatch scoring scheme and the manually set inter-phoneme similarity scheme, respectively, with a specificity of 77.2%~80.4%.

Design and Implementation of a Similarity based Plant Disease Image Retrieval using Combined Descriptors and Inverse Proportion of Image Volumes (Descriptor 조합 및 동일 병명 이미지 수량 역비율 가중치를 적용한 유사도 기반 작물 질병 검색 기술 설계 및 구현)

  • Lim, Hye Jin;Jeong, Da Woon;Yoo, Seong Joon;Gu, Yeong Hyeon;Park, Jong Han
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.30-43
    • /
    • 2018
  • Many studies have been carried out to retrieve images using colors, shapes, and textures which are characteristic of images. In addition, there is also progress in research related to the disease images of the crop. In this paper, to be a help to identify the disease occurred in crops grown in the agricultural field, we propose a similarity-based crop disease search system using the diseases image of horticulture crops. The proposed system improves the similarity retrieval performance compared to existing ones through the combination descriptor without using a single descriptor and applied the weight based calculation method to provide users with highly readable similarity search results. In this paper, a total of 13 Descriptors were used in combination. We used to retrieval of disease of six crops using a combination Descriptor, and a combination Descriptor with the highest average accuracy for each crop was selected as a combination Descriptor for the crop. The retrieved result were expressed as a percentage using the calculation method based on the ratio of disease names, and calculation method based on the weight. The calculation method based on the ratio of disease name has a problem in that number of images used in the query image and similarity search was output in a first order. To solve this problem, we used a calculation method based on weight. We applied the test image of each disease name to each of the two calculation methods to measure the classification performance of the retrieval results. We compared averages of retrieval performance for two calculation method for each crop. In cases of red pepper and apple, the performance of the calculation method based on the ratio of disease names was about 11.89% on average higher than that of the calculation method based on weight, respectively. In cases of chrysanthemum, strawberry, pear, and grape, the performance of the calculation method based on the weight was about 20.34% on average higher than that of the calculation method based on the ratio of disease names, respectively. In addition, the system proposed in this paper, UI/UX was configured conveniently via the feedback of actual users. Each system screen has a title and a description of the screen at the top, and was configured to display a user to conveniently view the information on the disease. The information of the disease searched based on the calculation method proposed above displays images and disease names of similar diseases. The system's environment is implemented for use with a web browser based on a pc environment and a web browser based on a mobile device environment.

A Bit Allocation Method Based on Proportional-Integral-Derivative Algorithm for 3DTV

  • Yan, Tao;Ra, In-Ho;Liu, Deyang;Zhang, Qian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1728-1743
    • /
    • 2021
  • Three-dimensional (3D) video scenes are complex and difficult to control, especially when scene switching occurs. In this paper, we propose two algorithms based on an incremental proportional-integral-derivative (PID) algorithm and a similarity analysis between views to improve the method of bit allocation for multi-view high efficiency video coding (MV-HEVC). Firstly, an incremental PID algorithm is introduced to control the buffer "liquid level" to reduce the negative impact on the target bit allocation of the view layer and frame layer owing to the fluctuation of the buffer "liquid level". Then, using the image similarity between views is used to establish, a bit allocation calculation model for the multi-view video main viewpoint and non-main viewpoint is established. Then, a bit allocation calculation method based on hierarchical B frames is proposed. Experimental simulation results verify that the algorithm ensures a smooth transition of image quality while increasing the coding efficiency, and the PSNR increases by 0.03 to 0.82dB while not significantly increasing the calculation complexity.

Customized Knowledge Creation Framework using Context- and intensity-based Similarity (상황과 정보 집적도를 고려한 유사도 기반의 맞춤형 지식 생성프레임워크)

  • Sohn, Mye M.;Lee, Hyun-Jung
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.113-125
    • /
    • 2011
  • As information resources have become more various and the number of the resources has increased, knowledge customization on the social web has been becoming more difficult. To reduce the burden, we offer a framework for context-based similarity calculation for knowledge customization using ontology on the CBR. Thereby, we newly developed context- and intensity-based similarity calculation methods which are applied to extraction of the most similar case considered semantic similarity and syntactic, and effective creation of the user-tailored knowledge using the selected case. The process is comprised of conversion of unstructured web information into cases, extraction of an appropriate case according to the user requirements, and customization of the knowledge using the selected case. In the experimental section, the effectiveness of the developed similarity methods are compared with other edge-counting similarity methods using two classes which are compared with each other. It shows that our framework leads higher similarity values for conceptually close classes compared with other methods.

Content-Based Image Retrieval using Histogram Area Calculation (히스토그램 영역계산을 이용한 내용기반 영상검색)

  • Park, Min-Sheik;Yoo, Gi-Hyoung;Kwak, Hoon-Sung
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.265-270
    • /
    • 2005
  • Histogram is very sensitive in lighting because of feature between color space. When it has intensity of moved light, It may be possibility that similarity drop down, So In this paper, introduce new image retrieval method that calls HAC (Histogram Area Calculation). This method divides area of Histogram by a few area and calculate areas. The proposed method is to calculate area of Histogram and compare similarity based on feature that histogram has presently. Performance of our proposed method was verified more excellent than other Conventional method and Merged Color Histogram.

  • PDF

Similarity Measure Design on High Dimensional Data

  • Nipon, Theera-Umpon;Lee, Sanghyuk
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • Designing of similarity on high dimensional data was done. Similarity measure between high dimensional data was considered by analysing neighbor information with respect to data sets. Obtained result could be applied to big data, because big data has multiple characteristics compared to simple data set. Definitely, analysis of high dimensional data could be the pre-study of big data. High dimensional data analysis was also compared with the conventional similarity. Traditional similarity measure on overlapped data was illustrated, and application to non-overlapped data was carried out. Its usefulness was proved by way of mathematical proof, and verified by calculation of similarity for artificial data example.

A Study on Similarity Calculation Method Between Research Infrastructure (국가연구시설장비의 유사도 판단기법에 관한 연구)

  • Kim, Yong Joo;Kim, Young Chan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.12
    • /
    • pp.469-476
    • /
    • 2018
  • In order to jointly utilize research infrastructure and to build efficient construction, which are essential in science and technology research and development process. Although various classification methods have been introduced for efficient utilization of registered information, functions that can be directly utilized such as similar research infrastructure search is not yet been implemented due to limitations of collection information. In this study, we analyzed the similar search technique so far, presented the methodology for the calculation of similarity of research infrastructure, and analyzed the learning result. Study suggested that a technique can be use to extract meaningful keywords from information and analyze the similarity between the research infrastructure.

Cluster-Based Similarity Calculation of IT Assets: Method of Attacker's Next Targets Detection

  • Dongsung Kim;Seon-Gyoung Shon;Dan Dongseong Kim;Huy-Kang Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.1-10
    • /
    • 2024
  • Attackers tend to use similar vulnerabilities when finding their next target IT assets. They also continuously search for new attack targets. Therefore, it is essential to find the potential targets of attackers in advance. Our method proposes a novel approach for efficient vulnerable asset management and zero-day response. In this paper, we propose the ability to detect the IT assets that are potentially infected by the recently discovered vulnerability based on clustering and similarity results. As the experiment results, 86% of all collected assets are clustered within the same clustering. In addition, as a result of conducting a similarity calculation experiment by randomly selecting vulnerable assets, assets using the same OS and service were listed.

Information Management by Data Quantification with FuzzyEntropy and Similarity Measure

  • Siang, Chua Hong;Lee, Sanghyuk
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.2
    • /
    • pp.35-41
    • /
    • 2013
  • Data management with fuzzy entropy and similarity measure were discussed and verified by applying reliable data selection problem. Calculation of certainty or uncertainty for data, fuzzy entropy and similarity measure are designed and proved. Proposed fuzzy entropy and similarity are considered as dissimilarity measure and similarity measure, and the relation between two measures are explained through graphical illustration.Obtained measures are useful to the application of decision theory and mutual information analysis problem. Extension of data quantification results based on the proposed measures are applicable to the decision making and fuzzy game theory.