Abstract
Determining the similarity between two strings can be applied various area such as information retrieval, spell checker and spam filtering. Similarity calculation between Korean strings based on dynamic programming methods firstly requires a definition of the similarity between phonemes. However, existing methods have a limitation that they use manually set similarity scores. In this paper, we propose a method to automatically calculate inter-phoneme similarity from a given set of variant words using a PAM-like probabilistic model. Our proposed method first finds the pairs of similar words from a given word set, and derives derivation rules from text alignment results among the similar word pairs. Then, similarity scores are calculated from the frequencies of variations between different phonemes. As an experimental result, we show an improvement of 10.1%~14.1% and 8.1%~11.8% in terms of sensitivity compared with the simple match-mismatch scoring scheme and the manually set inter-phoneme similarity scheme, respectively, with a specificity of 77.2%~80.4%.
두 문자열 간의 유사도를 계산하는 문제는 정보 검색, 오타 교정, 스팸 필터링 등 다양한 분야에 응용될 수 있다. 동적 계획법 기반의 유사도 계산 방법을 통하여 한글 문자열의 유사도 계산을 위해서는 우선 음소간의 유사도에 대한 정의가 필요하다. 그러나 기존의 방법들은 수동적 설정에 의한 유사도 점수를 사용하고 있다는 한계점이 있다. 본 논문에서는 PAM(Point Accepted Mutation) 행렬과 유사한 확률 모델을 이용하여 변형 단어 집합으로부터 음소 간의 유사도를 자동적으로 계산하는 기법을 제안한다. 제안 기법은 주어진 변형 단어의 집합 내 유사한 단어 쌍을 찾아 문자열 정렬(Text Alignment)을 수행함으로써 음소 변형 규칙을 도출하고, 이로부터 각 음소 쌍의 상호 변형 빈도에 따른 유사도 점수를 계산한다. 실험 결과 특이도(Specificity) 77.2~80.4% 수준에서 불일치 여부에 따른 단순 점수 부여 방식에 비해서는 10.4~14.1%, 수동으로 음소 간 유사도를 직접 설정하는 방식에 비해서는 8.1~11.8%의 민감도(Sensitivity) 향상이 있음을 확인하였다.