The aims of this study were to examine the acoustic features of Korean and Japanese vowels, and to determine whether new phones that do not have counterparts in Japanese or similar phones that have counterparts improve more from learning. This study consisted of three parts. In Experiment I, a speech production test was performed to observe the acoustic features of Korean and Japanese vowels. In Experiment II, the speech production of Korean vowels produced by Koreans, advanced Japanese learners of Korean, and beginning Japanese learners of Korean was investigated. In Experiment III, a speech perception study of Korean vowels produced by the two Japanese learner groups was conducted to observe the effect of learning on acquiring L2 phones. The conclusion drawn from the study was that the similar phones produced by Japanese show more similarity with those of Koreans than new phones in terms of F1 and F2, but Japanese learners of Korean displayed more improvement in new phones from learning.
We propose a generative probabilistic model with Dirichlet prior distribution for topic modeling and text similarity analysis. It assigns a topic and calculates text correlation between documents within a corpus. It also provides posterior probabilities that are assigned to each topic of a document based on the prior distribution in the corpus. We then present a Gibbs sampling algorithm for inference about the posterior distribution and compute text correlation among 50 abstracts from the papers published by IEEE. We also conduct a supervised learning to set a benchmark that justifies the performance of the LDA (Latent Dirichlet Allocation). The experiments show that the accuracy for topic assignment to a certain document is 76% for LDA. The results for supervised learning show the accuracy of 61%, the precision of 93% and the f1-score of 96%. A discussion for experimental results indicates a thorough justification based on probabilities, distributions, evaluation metrics and correlation coefficients with respect to topic assignment.
The Transactions of the Korea Information Processing Society
/
v.7
no.3
/
pp.1025-1031
/
2000
Pre-existing pattern recognition techniques, in the case of character recognition, have limited on the application field. But CAI character learning system and writer's recognition system are very important parts. The application field of pre-existing system can be expanded in the content that the learning of characters and the recognition of writers in the proposed paper. In order to achieve these goals, the development contents are the following: Firstly, pre-processing method by understanding the image structure is proposed, secondly, recognition of characters are accomplished b the histogram distribution characteristics. Finally, similarity measure functions are defined from standard character pattern for matching of the input character pattern. Also the effectiveness of this system is demonstrated by experimenting the standard primitive image.
International Journal of Advanced Culture Technology
/
v.7
no.1
/
pp.64-69
/
2019
With the advent of the fourth industry, the need for office automation with automatic character recognition capabilities is increasing day by day. Therefore, in this paper, we study a character recognition algorithm that effectively recognizes a new experimental data character by using learning data characters. The proposed algorithm computes the degree of similarity that the structural regions of learning data characters match the corresponding regions of the experimental data character. It has been confirmed that satisfactory results can be obtained by selecting the learning data character with the highest degree of similarity in the matching process as the final recognition result for a given experimental data character.
Kim, Do-Yun;Choi, Young-June;Roh, Bong-Soo;Choi, Jeung-Won
The Journal of the Korea institute of electronic communication sciences
/
v.13
no.5
/
pp.1043-1050
/
2018
In this paper, we propose a reinforce learning based on cooperative sensing scheme to select optimal secondary users(SUs) to enhance the detection performance of spectrum sensing in Cognitive radio(CR) networks. The SU with high accuracy is identified based on the similarity between the global sensing result obtained through cooperative sensing and the local sensing result of the SU. A fusion center(FC) uses similarity of SUs as reward value for Q-learning to determine SUs which participate in cooperative sensing with accurate sensing results. The experimental results show that the proposed method improves the detection performance compared to conventional cooperative sensing schemes.
This paper deals with a super-resolution that improves the resolution of side scan sonar images using learning-based compressive sensing. Learning-based compressive sensing combined with deep learning and compressive sensing takes a structure of a feed-forward network and parameters are set automatically through learning. In particular, we propose a method that can effectively extract additional information required in the super-resolution process through various initialization methods. Representative experimental results show that the proposed method provides improved performance in terms of Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) than conventional methods.
As artificial intelligence technologies, including deep learning, develop, these technologies are being introduced to code similarity analysis. In the traditional analysis method of calculating the graph edit distance (GED) after converting the source code into a control flow graph (CFG), there are studies that calculate the GED through a trained graph neural network (GNN) with the converted CFG, Methods for analyzing code similarity through CNN by imaging CFG are also being studied. In this paper, to determine which approach will be effective and efficient in researching code similarity analysis methods using artificial intelligence in the future, code similarity is measured through funcGNN, which measures code similarity using GNN, and Siamese Network, which is an image similarity analysis model. The accuracy was compared and analyzed. As a result of the analysis, the error rate (0.0458) of the Siamese network was bigger than that of the funcGNN (0.0362).
It is argued in this paper that, in determining semantic similarity, Korean words should be recategorized with a focus on the semantic relation to ontology in light of cross-linguistic morphological variations. It is proposed, in particular, that Korean semantic similarity should be measured on three tracks, human judgements track, relatedness track, and cross-part-of-speech relations track. As demonstrated in Yang et al. (2015), GloVe, the unsupervised learning machine on semantic similarity, is applicable to Korean with its performance being compared with human judgement results. Based on this compatability, it was further thought that the model's performance might most likely vary with different kinds of specific relations in different languages. An attempt was made to analyze them in terms of two major Korean-specific categories involved in their lexical and cross-POS-relations. It is concluded that languages must be analyzed by varying methods so that semantic components across languages may allow varying semantic distance in the vector space models.
Journal of the Korean Society for information Management
/
v.29
no.2
/
pp.155-171
/
2012
In text categorization, core terms of an input document are hardly selected as classification features if they do not occur in a training document set. Besides, synonymous terms with the same concept are usually treated as different features. This study aims to improve text categorization performance by integrating synonyms into a single feature and by replacing input terms not in the training document set with the most similar term occurring in training documents using Wikipedia. For the selection of classification features, experiments were performed in various settings composed of three different conditions: the use of category information of non-training terms, the part of Wikipedia used for measuring term-term similarity, and the type of similarity measures. The categorization performance of a kNN classifier was improved by 0.35~1.85% in $F_1$ value in all the experimental settings when non-learning terms were replaced by the learning term with the highest similarity above the threshold value. Although the improvement ratio is not as high as expected, several semantic as well as structural devices of Wikipedia could be used for selecting more effective classification features.
The purpose of this study was to investigate the preferred SSI topics of students and teachers in elementary, middle, and high schools. It analyzed the similarity of students' and teachers' preferred SSI topics by school level using the cosine similarity measure. A total of 566 students and 327 teachers from elementary, middle, and high schools participated in the study. Sixty topics were identified and listed in the areas of environment, science and technology, health and medicine, and other social issues based on the literature and SSI programs. Students and teachers were asked to select five of their favorite topics. The data was collected online using SurveyMonkey. The collected data was divided into six groups of students and teachers, and the frequency of topic selection was analyzed within each group. The topic preference similarity was analyzed by calculating vector values based on the frequency of the selected topics and measuring the cosine similarity between students, teachers, and teachers and students by school level. The results are as follows: First, the cosine similarity of SSI Preferred Topics between students' school-level cohorts was higher between middle and high school students (0.982) than between elementary and middle school students (0.651) or between elementary and high school students (0.662). Second, the cosine similarity of SSI Preferred Topics between teachers' school-level cohorts was similar for all comparison groups between elementary, middle, and high school. Third, the SSI topic preference similarity between students and teachers by school level had a higher cosine similarity between the elementary student and teacher cohorts (0.974) than the other school level comparisons, middle school (0.621) or high school (0.645). Access to topics of interest to students in SSI education is strongly associated with motivation and persistence in learning, as well as an enjoyable learning experience and positive attitudes toward learning. Therefore, when designing SSI lessons, it is important to examine topics from the perspective of student interest, especially if the teacher has selected SSI topics that are different from students' preferences. Careful instructional design will be needed to overcome the gap.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.