• 제목/요약/키워드: Similar Data

검색결과 9,284건 처리시간 0.044초

강우빈도해석에서의 측우기자료의 유용성 평가 (Evaluation for usefulness of Chukwookee Data in Rainfall Frequency Analysis)

  • 김기욱;유철상;박민규;김대하;박상형;김현준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1526-1530
    • /
    • 2007
  • In this study, the chukwookee data were evaluated by applying that for the historical rainfall frequency analysis. To derive a two parameter log-normal distribution by using historical data and modern data, censored data MLE and binomial censored data MLE were applied. As a result, we found that both average and standard deviation were all estimated smaller with chukwookee data then those with only modern data. This indicates that rather big events rarely happens during the period of chukwookee data then during the modern period. The frequency analysis results using the parameters estimated were also similar to those expected. The point to be noticed is that the rainfall quantiles estimated by both methods were similar, especially for the 99% threshold. This result indicates that the historical document records like the annals of Chosun dynasty could be valuable and effective for the frequency analysis. This also means the extension of data available for frequency analysis.

  • PDF

Nonlinear Canonical Correlation Analysis for Paralysis Disease Data

  • Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권3호
    • /
    • pp.515-521
    • /
    • 2004
  • Categorical data are mostly found in oriental medical research. The nonlinear canonical correlation analysis does not assume an interval level of measurement. In this paper, we apply nonlinear canonical correlation analysis to quantification and explain how similar sets of variables are to one another for paralysis disease data.

  • PDF

데이터 변형성 기반 유사성 연결을 위한 시각화 알고리즘 (Visualization Algorithm for Similarity Connection based on Data Transmutability)

  • 김분희
    • 한국전자통신학회논문지
    • /
    • 제9권11호
    • /
    • pp.1249-1254
    • /
    • 2014
  • 사람에 의해 만들어진 수많은 데이터를 기반으로 하는 빅 데이터는 유용한 정보를 얻기 위해 사용된다. 컴퓨터 프로그램의 특징에 인간 메모리의 변형성을 추가 한 기계 학습 기법을 적용 할 경우 보다 유용한 정보를 얻을 수 있다. 그리고 빅 데이터는 이러한 결론을 사용하여 예측된다. 인간은 원래의 데이터와 유사한 데이터를 기억하는 경향이 있다. 그래서 빅 데이터 처리 기술은 인간의 이러한 특성을 반영해야 한다. 본 연구에서는 정보의 선택성을 제공하는 알고리즘을 제안한다. 이 알고리즘은 위 요인들을 반영한 기술이다. 이 알고리즘은 데이터의 변형 특성에 기초하여 유사한 데이터를 결정하는 데 높은 선택성을 가진 데이터를 선택한다.

주변 확률을 고려하지 않는 확률적 흥미도 측도 계열 유사성 측도의 서열화 (A study on the ordering of PIM family similarity measures without marginal probability)

  • 박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.367-376
    • /
    • 2015
  • 데이터마이닝 기법 중의 하나인 군집분석은 다양한 특성을 지닌 관찰대상에 대해 유사성을 바탕으로 동질적인 군집으로 묶은 후, 동일 군집에 속해 있는 공통된 특성을 조사하는데 이용되는 기법이다. 본 논문에서는 주변 확률을 고려하지 않는 확률적 흥미도 측도 기반 유사성 측도인 Yule I과 II, Michael, Digby, Baulieu, 그리고 Dispersion 측도에 대해 상한 및 하한을 설정함으로써 이들의 대소관계를 규명하였다. 그 결과, 세 가지 유형의 대소 관계가 성립한다는 사실을 수식의 증명뿐만 아니라 실제 데이터 및 모의실험 데이터에 의해서도 확인할 수 있었다. 이들 측도들은 각 경계에 있는 측도와는 더욱 더 유사한 값을 가지므로 각 측도의 상한 및 하한은 여러 가지 측도들을 분류하는 도구가 되며, 실제 값의 관점에서 각 측도들의 관계를 알게 되면 주어진 알고리즘의 안정화에 도움이 될 수 있을 것이다.

A Comparison of the Cancer Incidence Rates between the National Cancer Registry and Insurance Claims Data in Korea

  • Seo, Hee Jung;Oh, In-Hwan;Yoon, Seok-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6163-6168
    • /
    • 2012
  • Although much health services research has been conducted using national health insurance claims data in Korea, the validity of this method has not been ascertained. The objective of this study was to validate the use of claims data for health services research by comparing incidence rate of cancers found using insurance claims data against rates of the national cancer registry of Korea. An algorithm to estimate incidence rates using claims data was developed and applied. The claims data from 2005-2008 were acquired and the patients admitted to hospitals due to cancer in 2008 without admission to hospital from 2005-2007 by the same diagnosis code were regarded as incident cases. The acquired results were compared with the values from the National Cancer Registry of Korea. The incidence rate of all cancers found using claims data was 363.1 per 100,000 people, which is very similar to the 361.9 per 100,000 rate of the national cancer registry. Also the age-, gender- and disease-specific rates between the two data sources were similar. Therefore, national health insurance claims data may be a worthwhile resource for health services research if appropriate algorithms are applied, especially considering the cost effectiveness of this method.

준 지도학습 알고리즘을 이용한 뇌파 감정 분석을 위한 학습데이터 선택 방법에 관한 연구 (A Study on Training Data Selection Method for EEG Emotion Analysis using Semi-supervised Learning Algorithm)

  • 윤종섭;김진헌
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.816-821
    • /
    • 2018
  • 최근 감정 분석 및 질병 진단을 위한 뇌파 연구 분야에서 인공 신경망을 기반으로 한 기계학습 알고리즘이 분류기로 널리 사용되기 시작했다. 뇌파 데이터 분류를 위해 기계학습 모델을 사용하는 경우 유사한 특성을 가지는 데이터만으로 학습데이터가 구성되면 다른 그룹의 데이터에 적용했을 때 분류 성능이 떨어질 수 있다. 본 논문에서는 이러한 문제점을 개선하기 위해 준 지도학습 알고리즘을 사용해 여러 그룹의 데이터를 선택하여 학습데이터 세트를 구성하는 방법을 제안한다. 이후 제안하는 방법을 사용하여 구성한 학습데이터 세트와 유사한 특성을 가지는 데이터로 구성된 학습데이터 세트로 모델을 학습하여 두 모델의 성능을 비교하였다.

고립단어 인식에 유사단어 정보를 이용한 단어의 검증 (Speech Verification using Similar Word Information in Isolated Word Recognition)

  • 백창흠;이기정홍재근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.1255-1258
    • /
    • 1998
  • Hidden Markov Model (HMM) is the most widely used method in speech recognition. In general, HMM parameters are trained to have maximum likelihood (ML) for training data. This method doesn't take account of discrimination to other words. To complement this problem, this paper proposes a word verification method by re-recognition of the recognized word and its similar word using the discriminative function between two words. The similar word is selected by calculating the probability of other words to each HMM. The recognizer haveing discrimination to each word is realized using the weighting to each state and the weighting is calculated by genetic algorithm.

  • PDF

A Table Integration Technique Using Query Similarity Analysis

  • Choi, Go-Bong;Woo, Yong-Tae
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권3호
    • /
    • pp.105-112
    • /
    • 2019
  • In this paper, we propose a technique to analyze similarity between SQL queries and to assist integrating similar tables. First, the table information was extracted from the SQL queries through the query structure analyzer, and the similarity between the tables was measured using the Jacquard index technique. Then, similar table clusters are generated through hierarchical cluster analysis method and the co-occurence probability of the table used in the query is calculated. The possibility of integrating similar tables is classified by using the possibility of co-occurence of similarity table and table, and classifying them into an integrable cluster, a cluster requiring expert review, and a cluster with low integration possibility. This technique analyzes the SQL query in practice and analyse the possibility of table integration independent of the existing business, so that the existing schema can be effectively reconstructed without interruption of work or additional cost.

선물시장의 시스템트레이딩에서 동적시간와핑 알고리즘을 이용한 최적매매빈도의 탐색 및 거래전략의 개발 (Finding the optimal frequency for trade and development of system trading strategies in futures market using dynamic time warping)

  • 이석준;오경주
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권2호
    • /
    • pp.255-267
    • /
    • 2011
  • 국내 정치적 사회적 경제적 요인 및 국제 정치 상황, 해외 경제 동향 등의 요인들을 비롯한 IMF이후의 금융시장 개방에 따른 외국투자자본의 유출입으로 인하여 한국 금융시장의 불확실성은 더욱 증가되었다. 특히 투자자들은 의사결정에 더 많은 혼돈을 겪게 되었고 투자 시 도움을 줄 수 있는 보다 유용한 도구들을 필요로 하게 되었다. 본 연구는 시스템 트레이딩을 이용하여 선물시장에서 거래 할 때 최적의 매매 타이밍을 알아보고 이에 적합한 전략을 알아보는 것이 목적이다. 패턴인식 알고리즘인 동적 시간 와핑 (DTW; Dynamic Time Warping) 알고리즘을 이용하여 빈도별 (10분, 30분, 60분, 일 별) 유사 패턴을 찾아내고 최적의 매매 타이밍을 분석한다. 이를 위해 주식시장의 대표적인 패턴들을 알아보고, 유사한 패턴을 보이는 기간을 DTW를 이용하여 빈도별로 분석한다. 유사한 패턴들의 검증을 위해 기술적 지표들의 개별 전략을 적용한 거래 시뮬레이션을 실시한다. 시뮬레이션 결과 대부분 30분 데이터에 적용된 전략들이 높은 수익률을 가져왔다.

The Potential of Satellite SAR Imagery for Mapping of Flood Inundation

  • Lee, Kyu-Sung;Hong, Chang-Hee;Kim, Yoon-Hyoung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.128-133
    • /
    • 1998
  • To assess the flood damages and to provide necessary information for preventing future catastrophe, it is necessary to appraise the inundated area with more accurate and rapid manner. This study attempts to evaluate the potential of satellite synthetic aperture radar (SAR) data for mapping of flood inundated area in southern part of Korea. JERS L-band SAR data obtained during the summer of 1997 were used to delineate the inundated areas. In addition, Landsat TM data were also used for analyzing the land cover condition before the flooding. Once the two data sets were co-registered, each data was separately classified. The water surface areas extracted from the SAR data and the land cover map generated using the TM data were overlaid to determine the flood inundated areas. Although manual interpretation of water surfaces from the SAR image seems rather simple, the computer classification of water body requires clear understanding of radar backscattering behavior on the earth's surfaces. It was found that some surface features, such as rice fields, runaway, and tidal flat, have very similar radar backscatter to water surface. Even though satellite SAR data have a great advantage over optical remote sensor data for obtaining imagery on time and would provide valuable information to analyze flood, it should be cautious to separate the exact areas of flood inundation from the similar features.

  • PDF