References
- 박인찬, 권오진, 김태윤 (2009). 시계열 모형을 이용한 주가지수 방향성 예측. <한국데이터정보과학회지>, 20, 991-998.
- 김경재 (1997). <범주형 전처리과정을 이용한 인공지능 기법에 의한 주가지수선물가격의 예측: KOSPI200 선물시장을 중심으로>, 석사학위논문, 한국과학기술원, 서울.
- 변종국 (1993). 주가지수선물의 성격과 이해. <증권>, 78, 26-48.
- 변현우, 송치우, 한성권, 이태규, 오경주 (2009). 변동성 지수기반 유전자 알고리즘을 활용한 계층구조 포트폴리오 최적화에 관한 연구. <한국데이터정보과학회지>, 20, 467-478.
- 신양규 (2009). 글로벌경제위기에서 콜금리와 환율의 인과관계에 관한 연구. <한국데이터정보과학회지>, 20, 655-660.
- 장재건 (1996). <기술적 분석지표를 이용한 선물투자기법>, 진리탐구, 서울.
- 한국선물학회 (2000). <선물 이론 및 실무>, 이론편, 금빛서원, 서울.
- Achelis S. B. (1995). Technical analysis from A to Z, Probus Publishing, Chicago.
- Aziz, A. M., Tummala, M. and Cristi, R. (1999). Fuzzy logic data correlation approach in multisensormultitarget tracking systems. Signal Processing, 76, 195-209. https://doi.org/10.1016/S0165-1684(99)00008-0
- Castellanos, J. A. and Tards, J. D. (1999). Mobile robot localization and map building: A multisensor fusion approach, Kluwer Academic Publishers, Boston.
- Chung, F. L., Fu, T. C., Ng, V. and Robert, W. P. (2004). An evolutionary approach to pattern-based time series segmentation. IEEE Transactions on Evolutionary Computation, 8, 471-489. https://doi.org/10.1109/TEVC.2004.832863
- Deboeck. G. (1994). Trading on the edge, John Wiley & Sons, Inc, Canada.
- Dong, M. and Zhou, X. S. (2002). Eeploring the fuzzy nature of technical patterns of U.S stock market. ICONIP'02-SEAL'02-FSKD'02, Singapore, 18-22.
- Gil, J. W. (2003). The Return generating process of corporate bonds based on credit ratings. Journal of Korean Data & Information, 14, 805-815.
- Jouseau, E. and Dorizzi, B. (1999). Neural network and fuzzy data fusion: Application to an on-line and real-time vehicle detection system. Pattern Recognition Letters, 20, 97-107. https://doi.org/10.1016/S0167-8655(98)00126-3
- Keogh, E. J. and Pazzani, M. J. (1999). Scaling up dynamic time warping to massive dataset. '99 Proceedings of the Third European Conference on Principles of Data Mining and Knowledge Discovery.
- Keogh, E. J. and Pazzani, M. J. (2001). Derivative dynamic time warping. First SIAM International Conference on Data Mining, Chicago, USA.
- Kim, S. D., Lee, J. W., Lee, J. W. and Chae, J. S (2002). A two-phase stock trading system using distributional differences. Lecture Notes in Computer Science, 2453, 399-423.
- Lee, S. J., Ahn, J. J., Oh, K. J. and Kim, T. Y. (2010). Using rough set to support investment strategies of real-time trading in futures market. Applied Intelligence, 32, 364-377. https://doi.org/10.1007/s10489-008-0150-y
- Leigh, W., Modani, N. and Hightower, R. (2004). A computational implementation of stock charting: A brupt volume increase as signal for movement in New York stock exchange composite index. Decision Support Systems, 37, 515-530. https://doi.org/10.1016/S0167-9236(03)00084-8
- Leigh, W., Modani, N., Purvis, R. and Roberts, T. (2002). Stock market trading rule discovery using technical charting heuristics. Expert Systems with Applications, 23, 155-159. https://doi.org/10.1016/S0957-4174(02)00034-9
- Leigh, W., Purvis, R. and Ragusa, J. M. (2002). Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural network, and genetic algorithm: A case study in romantic decision support. Decision Support Systems, 32, 161-174.
- Lo, A. W., Mamaysky, H. M. and Wang, J. (2000). Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. Journal of Finance, 55, 1705-1770. https://doi.org/10.1111/0022-1082.00265
- Morriss, S. B. (1994). Automated manufacturing systems - Actuators, controls, sensors and robotics, McGraw-Hill, Glencoe.
- Opitz, F., Henrich, W. and Kausch, T. (2004). Data fusion development concepts within complex surveillance systems, The 7th International Conference on Information Fusion.