Finding the optimal frequency for trade and development of system trading strategies in futures market using dynamic time warping

선물시장의 시스템트레이딩에서 동적시간와핑 알고리즘을 이용한 최적매매빈도의 탐색 및 거래전략의 개발

  • Lee, Suk-Jun (Department of Information and Industrial Engineering, Yonsei University) ;
  • Oh, Kyong-Joo (Department of Information and Industrial Engineering, Yonsei University)
  • 이석준 (연세대학교 정보산업공학과) ;
  • 오경주 (연세대학교 정보산업공학과)
  • Received : 2011.01.22
  • Accepted : 2011.03.17
  • Published : 2011.03.31

Abstract

The aim of this study is to utilize system trading for making investment decisions and use technical analysis and Dynamic Time Warping (DTW) to determine similar patterns in the frequency of stock data and ascertain the optimal timing for trade. The study will examine some of the most common patterns in the futures market and use DTW in terms of their frequency (10, 30, 60 minutes, and daily) to discover similar patterns. The recognized similar patterns were verified by executing trade simulation after applying specific strategies to the technical indicators. The most profitable strategies among the set of strategies applied to common patterns were again applied to the similar patterns and the results from DTW pattern recognition were examined. The outcome produced useful information on determining the optimal timing for trade by using DTW pattern recognition through system trading, and by applying distinct strategies depending on data frequency.

국내 정치적 사회적 경제적 요인 및 국제 정치 상황, 해외 경제 동향 등의 요인들을 비롯한 IMF이후의 금융시장 개방에 따른 외국투자자본의 유출입으로 인하여 한국 금융시장의 불확실성은 더욱 증가되었다. 특히 투자자들은 의사결정에 더 많은 혼돈을 겪게 되었고 투자 시 도움을 줄 수 있는 보다 유용한 도구들을 필요로 하게 되었다. 본 연구는 시스템 트레이딩을 이용하여 선물시장에서 거래 할 때 최적의 매매 타이밍을 알아보고 이에 적합한 전략을 알아보는 것이 목적이다. 패턴인식 알고리즘인 동적 시간 와핑 (DTW; Dynamic Time Warping) 알고리즘을 이용하여 빈도별 (10분, 30분, 60분, 일 별) 유사 패턴을 찾아내고 최적의 매매 타이밍을 분석한다. 이를 위해 주식시장의 대표적인 패턴들을 알아보고, 유사한 패턴을 보이는 기간을 DTW를 이용하여 빈도별로 분석한다. 유사한 패턴들의 검증을 위해 기술적 지표들의 개별 전략을 적용한 거래 시뮬레이션을 실시한다. 시뮬레이션 결과 대부분 30분 데이터에 적용된 전략들이 높은 수익률을 가져왔다.

Keywords

References

  1. 박인찬, 권오진, 김태윤 (2009). 시계열 모형을 이용한 주가지수 방향성 예측. <한국데이터정보과학회지>, 20, 991-998.
  2. 김경재 (1997). <범주형 전처리과정을 이용한 인공지능 기법에 의한 주가지수선물가격의 예측: KOSPI200 선물시장을 중심으로>, 석사학위논문, 한국과학기술원, 서울.
  3. 변종국 (1993). 주가지수선물의 성격과 이해. <증권>, 78, 26-48.
  4. 변현우, 송치우, 한성권, 이태규, 오경주 (2009). 변동성 지수기반 유전자 알고리즘을 활용한 계층구조 포트폴리오 최적화에 관한 연구. <한국데이터정보과학회지>, 20, 467-478.
  5. 신양규 (2009). 글로벌경제위기에서 콜금리와 환율의 인과관계에 관한 연구. <한국데이터정보과학회지>, 20, 655-660.
  6. 장재건 (1996). <기술적 분석지표를 이용한 선물투자기법>, 진리탐구, 서울.
  7. 한국선물학회 (2000). <선물 이론 및 실무>, 이론편, 금빛서원, 서울.
  8. Achelis S. B. (1995). Technical analysis from A to Z, Probus Publishing, Chicago.
  9. Aziz, A. M., Tummala, M. and Cristi, R. (1999). Fuzzy logic data correlation approach in multisensormultitarget tracking systems. Signal Processing, 76, 195-209. https://doi.org/10.1016/S0165-1684(99)00008-0
  10. Castellanos, J. A. and Tards, J. D. (1999). Mobile robot localization and map building: A multisensor fusion approach, Kluwer Academic Publishers, Boston.
  11. Chung, F. L., Fu, T. C., Ng, V. and Robert, W. P. (2004). An evolutionary approach to pattern-based time series segmentation. IEEE Transactions on Evolutionary Computation, 8, 471-489. https://doi.org/10.1109/TEVC.2004.832863
  12. Deboeck. G. (1994). Trading on the edge, John Wiley & Sons, Inc, Canada.
  13. Dong, M. and Zhou, X. S. (2002). Eeploring the fuzzy nature of technical patterns of U.S stock market. ICONIP'02-SEAL'02-FSKD'02, Singapore, 18-22.
  14. Gil, J. W. (2003). The Return generating process of corporate bonds based on credit ratings. Journal of Korean Data & Information, 14, 805-815.
  15. Jouseau, E. and Dorizzi, B. (1999). Neural network and fuzzy data fusion: Application to an on-line and real-time vehicle detection system. Pattern Recognition Letters, 20, 97-107. https://doi.org/10.1016/S0167-8655(98)00126-3
  16. Keogh, E. J. and Pazzani, M. J. (1999). Scaling up dynamic time warping to massive dataset. '99 Proceedings of the Third European Conference on Principles of Data Mining and Knowledge Discovery.
  17. Keogh, E. J. and Pazzani, M. J. (2001). Derivative dynamic time warping. First SIAM International Conference on Data Mining, Chicago, USA.
  18. Kim, S. D., Lee, J. W., Lee, J. W. and Chae, J. S (2002). A two-phase stock trading system using distributional differences. Lecture Notes in Computer Science, 2453, 399-423.
  19. Lee, S. J., Ahn, J. J., Oh, K. J. and Kim, T. Y. (2010). Using rough set to support investment strategies of real-time trading in futures market. Applied Intelligence, 32, 364-377. https://doi.org/10.1007/s10489-008-0150-y
  20. Leigh, W., Modani, N. and Hightower, R. (2004). A computational implementation of stock charting: A brupt volume increase as signal for movement in New York stock exchange composite index. Decision Support Systems, 37, 515-530. https://doi.org/10.1016/S0167-9236(03)00084-8
  21. Leigh, W., Modani, N., Purvis, R. and Roberts, T. (2002). Stock market trading rule discovery using technical charting heuristics. Expert Systems with Applications, 23, 155-159. https://doi.org/10.1016/S0957-4174(02)00034-9
  22. Leigh, W., Purvis, R. and Ragusa, J. M. (2002). Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural network, and genetic algorithm: A case study in romantic decision support. Decision Support Systems, 32, 161-174.
  23. Lo, A. W., Mamaysky, H. M. and Wang, J. (2000). Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. Journal of Finance, 55, 1705-1770. https://doi.org/10.1111/0022-1082.00265
  24. Morriss, S. B. (1994). Automated manufacturing systems - Actuators, controls, sensors and robotics, McGraw-Hill, Glencoe.
  25. Opitz, F., Henrich, W. and Kausch, T. (2004). Data fusion development concepts within complex surveillance systems, The 7th International Conference on Information Fusion.