• Title/Summary/Keyword: Silylation-modification

Search Result 6, Processing Time 0.02 seconds

Surface Modification of Ba0.6Sr0.4TiO3 by Trimethylsilyl Chloride as a Silylation Agent (Trimethylsilyl Chloride를 Silylation Agent로 사용한 Ba0.6Sr0.4TiO3 나노입자의 표면개질 연구)

  • Lee, Chan;Han, Wooje;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.127-132
    • /
    • 2019
  • In this study, barium strontium titanate (BSTO) with high dielectric perovskite structure was synthesized by liquid-solid solution synthesis and the surface was modified using trimethylsilyl chloride (TMCS) as a silylation agent. Silylation surface modification is a method of reacting -OH ligand on the surface of BSTO nanoparticles with Cl in TMCS to generate HCl and replacing the ligand on the surface of nanoparticles with -Si, -CH3. Silylation was optimized by varying the concentration of TMCS, and the structure of the silicon network was confirmed by Fourier-transform infrared spectroscopy. In addition, the crystallinity of BSTO nanoparticles was confirmed by X-ray diffractometer and the size of the nanoparticles was calculated using Scherrer equation. The field emission scanning electron microscopic image observed the change of the surface-modified BSTO particle size, and the contact angle measurement confirmed the hydrophobic property of the contact angle of 120.9° in the optimized nanoparticles. Finally, the surface-modified BSTO dispersion experiment in de-ionized water confirmed the hydrophobic degree of the nanoparticles.

Preparation of Self-repairing Polymer-modified Waterproofing Asphalt-montmorillonite Composite: 1. Silylation Characteristics of Montmorillonite (K-10) Using 3-aminopropyltriethoxysilane and its Optimal Condition According to a Criterion by XRD Analysis (자가치유성을 갖는 고분자개질 방수아스팔트-몬모릴로나이트 composite 제조: 1. 3-aminopropyltriethoxysilane에 의한 몬모릴로나이트(K-10)의 실란화 특성 및 XRD 분석의 기준에 따른 최적화)

  • Lee, Eun Ju;Lee, Jong Hoon;Park, You Jin;Yoon, Yong Keun;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.401-408
    • /
    • 2017
  • In preparation of self-repairing polymer-modified waterproofing asphalt-montmorillonite (MMT) composite, silylation-modification characteristics of cation ($Na^+$) exchanged K-10 (Na-MMT-K) using 3-aminopropyltriethoxysilane (APS) were studied and the optimal conditions of its silylation-modification process were proposed by use of the results of XRD analysis on silylation-modified Na-MMT-K (S-Na-MMT-K) under various conditions. According to XRD results, it was confirmed that peaks of Na-MMT-K were simultaneously consistent with those of K-10 and natural or Ca-MMT modified Na-MMT. Similarly, S-Na-MMT-K was observed to have two basal spacings ($d_{001}$), among which the area-ratio of a secondary (001) peak ($2{\theta}=3.9{\sim}4.2^{\circ}$) to a primary (001) peak ($2{\theta}{\sim}8.838^{\circ}$) was suggested to be a criterion to represent a degree of APS silylation-modification. Then, the optimal conditions on APS-stirring period prior to APS-MMT reaction, APS-MMT reaction period, APS concentration and reaction temperature at the highest area-ratio were turned out to be 20 min, 2~3 hr, 7.5 w/v% and $50^{\circ}C$, respectively.

Preparation of Self-repairing Polymer-modified Waterproofing Asphalt-montmorillonite Composite: 2. Validation of Optimized Silylation of Montmorillonite (K-10) Using 3-aminopropyltriethoxysilane (자가치유성을 갖는 고분자개질 방수아스팔트-몬모릴로나이트 composite 제조: 2. 3-aminopropyltriethoxysilane에 의한 몬모릴로나이트(K-10)의 실란화 최적화 검증)

  • Lee, Eun Ju;Lee, Jong Hoon;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.409-418
    • /
    • 2017
  • In preparation of self-repairing polymer-modified waterproofing asphalt-montmorillonite (MMT) composite, silylation-modification characteristics of cation ($Na^+$) exchanged K-10 (Na-MMT-K) using 3-aminopropyltriethoxysilane (APS) were studied and the optimal conditions of its silylation-modification process were proposed by use of the results of instrumental analysis, including FTIR, XRD, NMR and TGA, on silylation-modified Na-MMT-K (S-Na-MMT-K) under various conditions. According to FTIR analysis on S-Na-MMT-K, its peak-strengths of Si-O, -$NH_2$, -$CH_2$- and -OH, correlated with APS silylation-modification reaction, were compared each other. As a result, its optimal conditions including APS-MMT reacting period, APS-stirring period prior to APS-MMT reaction, APS concentration and reaction temperature were turned out to be 2~3 h, 20 min, 7.5 w/v% and $50^{\circ}C$, respectively. In addition, the optimal conditions induced from the results of TGA were also nearly consistent to those according to the results of FTIR analyses. These optimal conditions were turned out to be almost consistent to those drawn according to a criterion from XRD results suggested previously by Lee et al., by which the criterion was validated.

Characterizations of Modified Silica Nanoparticles(I)

  • Min, Seong-Kee;Park, Chan-Young;Lee, Won-Ki;Seul, Soo-Duk
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.275-279
    • /
    • 2012
  • (3-mercaptopropyl)trimethoxysilane (MPTMS) was used as a silylation agent, and modified silica nanoparticles were prepared by solution polymerization. 2.0 g of silica nanoparticles, 150 ml of toluene, and 20 ml of MPTMS were put into a 300 ml flask, and these mixtures were dispersed with ultrasonic vibration for 60 min. 0.2 g of hydroquinone as an inhibitor and 1 to 2 drops of 2,6-dimethylpyridine as a catalyst were added into the mixture. The mixture was then stirred with a magnetic stirrer for 8 hrs. at room temperature. After the reaction, the mixture was centrifuged for 1 hr. at 6000rpm. After precipitation, 150 ml of ethanol was added, and ultrasonic vibration was applied for 30 min. After the ultrasonic vibration, centrifugation was carried out again for 1 hr. at 6000rpm. Organo-modification of silica nanoparticles with a ${\gamma}$-methacryloxypropyl functional group was successfully achieved by solution polymerization in the ethanol solution. The characteristics of the ${\gamma}$-mercaptopropyl modified silica nanoparticles (MPSN) were examined using X-ray photoelectron spectroscopy (XPS, THERMO VG SCIENTIFIC, MultiLab 2000), a laser scattering system (LSS, TOPCON Co., GLS-1000), Fourier transform infrared spectroscopy (FTIR, JASCO INTERNATIONL CO., FT/IR-4200), scanning electron microscopy (SEM, HITACHI, S-2400), an elemental analysis (EA, Elementar, Vario macro/micro) and a thermogravimetric analysis (TGA, Perkin Elmer, TGA 7, Pyris 1). From the analysis results, the content of the methacryloxypropyl group was 0.98 mmol/g and the conversion rate of acrylamide monomer was 93%. SEM analysis results showed that the organo-modification of ultra-fine particles effectively prevented their agglomeration and improved their dispensability.

Study on the hydrophobic modification of zirconia surface for organic-inorganic hybrid coatings (유-무기 하이브리드 코팅액 제조를 위한 지르코니아 표면의 소수화 개질 연구)

  • Lee, Soo;Moon, Sung Jin;Park, Jung Ju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.260-270
    • /
    • 2017
  • Zirconia has white color and physical, chemical stability, also using in high temperature materials and various industrial structural ceramics such as heat insulating materials and refractories due to their low thermal conductivity, excellent strength, toughness, and corrosion resistance. If hydrophobically modified zirconia is introduced into a hydrophobic acrylate coating solution, the hardness, chemical, electrical, and optical properties will be improved due to the better dispersibility of inorganic particle in organic coating media. Thus, we introduced $-CH_3$ group through silylation reaction using either trimethylchlorosilane(TMCS) or hexamethyldisilazane(HMDZ) on zirconia surface. The $Si-CH_3$ peaks derived from TMCS and HMDZ on hydrophobically modified zirconia surface was confirmed by FT-IR ATR spectroscopy, and introduction of silicon was confirmed by FE-SEM/EDS and ICP-AES. In addition, the sedimentation rate result in acrylate monomer of the modified zirconia showed the improved dispersibility. Comparison of the sizes of a pristine and the modified zirconia particles, which were clearly measured not by the normal microscope but by particle size analysis, provided a pulverizing was occurred by physical force during the silylation process. From the BET analysis data, the specific surface area of zirconia was approximately $18m^2/g$ and did not significantly change during modification process.

Mesoporous Silica Catalysts Modified with Sulfonic Acid and Their Catalytic Activity on Ring Opening Polymerization of Octamethylcyclotetrasiloxane (술폰산으로 표면개질된 메조기공 실리카 촉매의 제조 및 Octamethylcyclotetrasiloxane 개환중합에서의 촉매 활성)

  • Lee, Yeonsong;Hwang, Ha Soo;Lee, Jiyoung;Lo, Nu Hoang Tien;Nguyen, Tien Giang;Lee, Donghyun;Park, In
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.383-389
    • /
    • 2020
  • Mesoporous silica solid catalysts modified with sulfonic acid were prepared for cationic ring-opening polymerization of octamethylcyclotetrasiloxane (D4). Two sets of MCM-41 (1.7 and 2.8 nm) and SBA-15 (8.1 and 15.9 nm) with different pore sizes were used as catalyst supports. The surface of silica materials was modified with (3-mercaptopropyl)trimethoxysilane by silylation reaction and oxidized to sulfonic acid. The structures of the prepared catalysts were examined by X-ray diffraction and nitrogen adsorption-desorption. The pore size, specific surface area, and pore volume of the modified solid catalysts decreased slightly. In addition, the modification of the sulfonic acid on the silica surface was confirmed by using infrared spectroscopy and nuclear magnetic resonance spectroscopy. To observe the effect of the particle size on the catalytic activity, it was observed with a scanning electron microscope. The catalysts were used to synthesize PDMS through a ring-opening polymerization of D4, and the conversion and polymerization rate of the polymerization reaction depended on the pore size, specific surface area, particle size, and particle agglomeration of the catalysts. In order for the polymerization rate, the catalyst prepared with SBA-15 of 8.1 nm pore size had the fastest reaction rate and showed the best catalytic activity.