References
- J. W. Lee, "Nano Material Technology Trend (in Kor.)", KISTI, Daejeon, 2 (2004).
- W. T. Kim, "The Present Status and Outlook of Nano Technology (in Kor.)", Proc. International Microelectronics and Packaging Society Conference, KIST, Seoul, 37 (2001).
- C. Liu, T. J. Hajagos, D. Chen, Y. Chen, D. Kishpaugh, and Q. Pei, "Efficient one-pot synthesis of colloidal zirconium oxide nanoparticles for high-refractive-index nanocomposites", ACS Appl. Mater. Interfaces., 8(7), 4795 (2016). https://doi.org/10.1021/acsami.6b00743
- T. Higashihara and M. Ueda, "Recent progress in high refractive index polymers", Macromolecules, 48(7), 1915 (2015). https://doi.org/10.1021/ma502569r
-
S. Maeda, M. Fujita, N. Idota, K. Matsukawa, and Y. Sugahar, "Preparation of transparent bulk
$TiO_2$ /PMMA hybrids with improved refractive indices via an in situ polymerization process using$TiO_2$ nanoparticles bearing PMMA chains grown by surface-initiated atom transfer radical polymerization", ACS Appl. Mater. Interfaces., 8(50), 34762 (2016). https://doi.org/10.1021/acsami.6b10427 - M. Vijatovic, J. D. Bobic, and B. D. Stojanovic, "History and Challenges of Barium Titanate: Part I", Sci. Sinter., 40(2), 155 (2008). https://doi.org/10.2298/SOS0802155V
-
T. Y. Lee, K. H. Kim, M. S. Kim, J. H. Choi, M. S. Kim, and S. H. Yoo, "Light Efficiency of LED Package with
$TiO_2$ -nanoparticle-dispersed Encapsulant", J. Microelectron. Packag. Soc., 21(3), 31 (2014). https://doi.org/10.6117/kmeps.2014.21.3.031 -
X. Wang, B. I. Lee, M. Hu, E. A. Payzant, and D. A. Blom, "Nanocrystalline
$BaTiO_3$ powder via a sol process ambient conditions", J. Eur. Ceram. Soc., 26, 2319 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.04.002 -
J. B. Mamani, L. F. Gamarra, and G. E. de S. Brito, "Synthesis and characterization of
$Fe_3O_4$ nanoparticles with perspectives in biomedical applications", Mat. Res., 17, 542 (2014). https://doi.org/10.1590/S1516-14392014005000050 -
P. K. Dutta and J. R. Gregg, "Hydrothermal synthesis of tetragonal barium titanate (
$BaTiO_3$ )", Chemistry of materials, 4(4), 843 (1992). https://doi.org/10.1021/cm00022a019 -
M. Niederberger, N. Pinna, J. Polleux, and M. Antonietti, "A general soft?chemistry route to perovskites and related materials: synthesis of
$BaTiO_3$ ,$BaZrO_3$ , and$LiNbO_3$ nanoparticles", Angew. Chem., 43(17), 2270 (2004). https://doi.org/10.1002/anie.200353300 -
M. L. Moreira, G. P. Mambrini, D. P. Volanti, E. R. Leite, M. O. Orlandi, P. S. Pizani, V. R. Mastelaro, C. O. Paiva-Santos, E. Longo, and J. A. Varela, "Hydrothermal microwave: a new route to obtain photoluminescent crystalline
$BaTiO_3$ nanoparticles", Chem. Mater., 20(16), 5381 (2008). https://doi.org/10.1021/cm801638d - S. I. Ohara, A. Kondo, H. Shimoda, K. Sato, H. Abe, and M. Naito, "Rapid mechanochemical synthesis of fine barium titanate nanoparticles", Mater. Lett., 62(17-18), 2957 (2008). https://doi.org/10.1016/j.matlet.2008.01.083
- W. Han, B. W. Yoo, K.-H. Kwon, H. H. Cho, and H.-H. Park, "Fluorine ligand exchange effect in poly (vinylidenefluorideco-hexafluoropropylene) with embedded fluorinated barium titanate nanoparticles", Thin Solid Films, 619, 17 (2016). https://doi.org/10.1016/j.tsf.2016.10.043
- G. Dermont, M. Bergeron, G. Mercier, and M. Richer-Lafleche, "Soil washing for metal removal: a review of physical/ chemical technologies and field applications", J. Hazard. Mater., 152(1), 1 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.043
- S. J. Chang, W. S. Liao, C. J. Ciou, J. T. Lee, and C. C. Li, "An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability", J. Colloid. Interface Sci., 329(2), 300 (2009). https://doi.org/10.1016/j.jcis.2008.10.011
-
Y. C. Chen, C. C. Tsai, and Y. D. Lee, "Preparation and properties of silylated PTFE/
$SiO_2$ organic-inorganic hybrids via sol-gel process", Journal of Polymer Science Part A: Polymer Chemistry, 42(7), 1789 (2004). https://doi.org/10.1002/pola.20033 -
X. Zhang, H. Chen, Y. Ma, C. Zhao, and W. Yanga, "Preparation and dielectric properties of core-shell structural composites of poly (1H, 1H, 2H, 2H-perfluorooctyl methacrylate)@
$BaTiO_3$ nanoparticles", Applied Surface Science, 277, 121 (2013). https://doi.org/10.1016/j.apsusc.2013.03.178 -
M. Iijima, N. Sato, I. W. Lenggoro, and H. Kamiya, "Surface modification of
$BaTiO_3$ particles by silane coupling agents in different solvents and their effect on dielectric properties of$BaTiO_3$ /epoxy composites", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 352(1-3), 88 (2009). https://doi.org/10.1016/j.colsurfa.2009.10.005 - S. S. Chee and J. H. Lee, "Effects of Synthetic Temperature and Amount of Oleylamine in Synthesis of Cu-Based Nanoparticles Using Heptyl Alcohol Solvent", J. Microelectron. Packag. Soc., 21(3), 57 (2014). https://doi.org/10.6117/kmeps.2014.21.3.057
- G. McHale, N. J. Shirtcliffe, and M. I. Newton, "Contactangle hysteresis on super-hydrophobic surfaces", Langmuir, 20(23), 10146 (2004). https://doi.org/10.1021/la0486584
-
M. Luo, J.-Q. Zhao, W. Tang, and C.-S. Pu, "Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of
$TiO_2$ nanoparticles", Applied Surface Science, 249(1-4), 76 (2005). https://doi.org/10.1016/j.apsusc.2004.11.054