DOI QR코드

DOI QR Code

Mesoporous Silica Catalysts Modified with Sulfonic Acid and Their Catalytic Activity on Ring Opening Polymerization of Octamethylcyclotetrasiloxane

술폰산으로 표면개질된 메조기공 실리카 촉매의 제조 및 Octamethylcyclotetrasiloxane 개환중합에서의 촉매 활성

  • Lee, Yeonsong (Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology) ;
  • Hwang, Ha Soo (Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology) ;
  • Lee, Jiyoung (Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology) ;
  • Lo, Nu Hoang Tien (KITECH School, University of Science and Technology) ;
  • Nguyen, Tien Giang (KITECH School, University of Science and Technology) ;
  • Lee, Donghyun (School of Chemical Engineering, Sungkyunkwan University) ;
  • Park, In (Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology)
  • 이연송 (한국생산기술연구원 청정기술연구소) ;
  • 황하수 (한국생산기술연구원 청정기술연구소) ;
  • 이지영 (한국생산기술연구원 청정기술연구소) ;
  • 로누호앙티엔 (과학기술연합대학원대학교 KITECH 스쿨) ;
  • 느윙티엔지앙 (과학기술연합대학원대학교 KITECH 스쿨) ;
  • 이동현 (성균관대학교 화학공학/고분자공학부) ;
  • 박인 (한국생산기술연구원 청정기술연구소)
  • Received : 2020.06.01
  • Accepted : 2020.06.25
  • Published : 2020.08.10

Abstract

Mesoporous silica solid catalysts modified with sulfonic acid were prepared for cationic ring-opening polymerization of octamethylcyclotetrasiloxane (D4). Two sets of MCM-41 (1.7 and 2.8 nm) and SBA-15 (8.1 and 15.9 nm) with different pore sizes were used as catalyst supports. The surface of silica materials was modified with (3-mercaptopropyl)trimethoxysilane by silylation reaction and oxidized to sulfonic acid. The structures of the prepared catalysts were examined by X-ray diffraction and nitrogen adsorption-desorption. The pore size, specific surface area, and pore volume of the modified solid catalysts decreased slightly. In addition, the modification of the sulfonic acid on the silica surface was confirmed by using infrared spectroscopy and nuclear magnetic resonance spectroscopy. To observe the effect of the particle size on the catalytic activity, it was observed with a scanning electron microscope. The catalysts were used to synthesize PDMS through a ring-opening polymerization of D4, and the conversion and polymerization rate of the polymerization reaction depended on the pore size, specific surface area, particle size, and particle agglomeration of the catalysts. In order for the polymerization rate, the catalyst prepared with SBA-15 of 8.1 nm pore size had the fastest reaction rate and showed the best catalytic activity.

프로필 술폰산으로 개질된 메조기공 실리카 고체 산 촉매를 octamethylcyclotetrasiloxane (D4)의 양이온 개환중합을 위해 합성하였다. 서로 다른 기공 크기를 갖는 두 세트의 MCM-41 (1.7 및 2.8 nm) 및 SBA-15 (8.1 및 15.9 nm)을 촉매의 지지체로 사용하였고, 이를 (3-mercaptopropyl)trimethoxysilane으로 표면개질하고 산화시켜 술폰산으로 개질된 고체 산촉매를 제조하였다. 제조된 촉매는 기공 크기와 비표면적, 기공 부피가 약간씩 감소하였음을 X선 회절, 질소흡탈착을 통하여 확인하였다. 또한 적외선분광법과 핵자기공명법의 분광학적 방법을 이용하여 술폰산이 개질되었음을 확인하였다. 입도의 촉매 활성에 대한 효과를 관찰하기 위하여 주사전자현미경으로 관찰하였다. D4의 개환중합을 통한 PDMS 합성을 위하여 촉매를 사용하였으며, 중합 반응의 전환율과 중합 속도는 촉매의 기공 크기, 비표면적, 입자크기 및 입자의 응집도에 의존하였다. 중합 속도의 순서는 8.1 nm의 SBA-15으로 제조한 촉매가 가장 반응속도가 빨랐으며, 가장 좋은 촉매 활성을 보였다.

Keywords

References

  1. H. H. Mardhiah, H. C. Ong, H. H. Masjuki, S. Lim, and H. V. Lee, A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils, Renew. Sust. Energ. Rev., 67, 1225-1236 (2017). https://doi.org/10.1016/j.rser.2016.09.036
  2. C. M. Friend and B. Xu, Heterogeneous catalysis: A central science for a sustainable future, Acc. Chem. Res., 50, 517-521 (2017). https://doi.org/10.1021/acs.accounts.6b00510
  3. D. Margolese, A. M. Melero, S. C. Christiansen, B.F. Chmelka, and G. D. Stucky, Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups, Chem. Mater., 12, 2448-2459 (2000). https://doi.org/10.1021/cm0010304
  4. J. A. Melero, R. Grieken, and G. Morales, Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials, Chem. Rev., 106, 3790-3812 (2006). https://doi.org/10.1021/cr050994h
  5. M. Kitano, K. Arai, A. Kodama, T. Kousaka, K. Nakajima, S. Hayashi, and M. Hara, Preparation of a sulfonated porous carbon catalyst with high specific surface area, Catal. Lett., 131, 242-249 (2009). https://doi.org/10.1007/s10562-009-0062-4
  6. J. Ji, G. Zhang, H. Chen, S. Wang, G. Zhang, F. Zhang, and X. Fan, Sulfonated graphene as water-tolerant solid acid catalyst, Chem. Sci., 2, 484-487 (2010). https://doi.org/10.1039/c0sc00484g
  7. M. Hara, T. Yoshida, A. Takagaki, T. Takata, J. N. Kondo, S. Hayashi, and K. Domen, A carbon material as a strong protonic acid, Angew. Chem. Int. Ed., 43, 2955-2958 (2004). https://doi.org/10.1002/anie.200453947
  8. B. C. Wilson and C. W. Jones, A recoverable, metal-free catalyst for the green polymerization of ${\varepsilon}$-caprolactone, Macromolecules, 37, 9709-9714 (2004). https://doi.org/10.1021/ma048239d
  9. S. Miao and B. H. Shanks, Mechanism of acetic acid esterification over sulfonic acid-functionalized mesoporous silica, J. Catal., 279, 136-143 (2011). https://doi.org/10.1016/j.jcat.2011.01.008
  10. L. Sherry and J. A. Sullivan, The reactivity of mesoporous silica modified with acidic sites in the production of biodiesel, Catal. Today, 175, 471-476 (2011). https://doi.org/10.1016/j.cattod.2011.04.017
  11. A. S. Amarasekara and O. S. Owereh, Synthesis of a sulfonic acid functionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose, Catal. Commun., 11, 1072-1075 (2010). https://doi.org/10.1016/j.catcom.2010.05.012
  12. D. Das, J. F. Lee, and S. Cheng, Selective synthesis of bisphenol- A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups, J. Catal., 223, 152-160 (2004). https://doi.org/10.1016/j.jcat.2004.01.025
  13. E. Pedraza, A. C. Brady, C. A. Fraker, and C. L. Stabler, Synthesis of macroporous poly (dimethylsiloxane) scaffolds for tissue engineering applications, J. Biomater. Sci. Polym. Ed., 24, 1041-1056 (2013). https://doi.org/10.1080/09205063.2012.735097
  14. B. Yu, S.-Y. Kang, A. Akthakul, N. Ramadurai, M. Pilkenton, A. Patel, A. Nashat, D. G. Anderson, F. H. Sakamoto, B. A. Gilchrest, R. R. Anderson, and R. Langer, An elastic second skin, Nat. Mater., 15, 911-918 (2016). https://doi.org/10.1038/nmat4635
  15. M. Cazacu and M. Marcu, Silicone rubbers. ix. contributions to polydimethylsiloxane-${\alpha}$,${\omega}$-diols synthesis by heterogeneous catalysis, J. Macromol. Sci. A, 32, 1019-1029 (1995). https://doi.org/10.1080/10601329508019142
  16. J. Vallejo-Montesinos, A. Villegas, A. Jacobo-Azuara, J. M. Martinez, E. Ramirez-Oliva, A. Romero-Izquierdo, and J. Cervantes, Synthetic and natural silica-aluminates as inorganic acidic catalysts in ring opening polymerization of cyclosiloxanes, Appl. Organomet. Chem., 26, 362-368 (2012). https://doi.org/10.1002/aoc.2873
  17. F. Li, C. Li, C. Ji, X. Hu, Y. He, Y. Sun, and Z. Yun, Synthesis and properties of $MoO_3/ZrO_2$ solid acid catalysts for the preparation of polydimethylsiloxane (PDMS) via octamethylcyclotetrasiloxane ($D_4$) ring-opening, J. Macromol. Sci. A, 56, 86-95 (2019). https://doi.org/10.1080/10601325.2018.1547114
  18. X. Yang, Q. Shao, Q. Fang, L. Yang, C. Cao, Z. Ren, L. Wu, G. Lai, and G. Han, Synthesis of vinyl end-capped polydimethylsiloxane by ring opening polymerization of octamethylcyclotetrasiloxane ($D_4$) catalyzed by rare earth solid super acid $SO_4^{2-}$/$TiO_2$/$Ln^{3+}$, Polym. Int., 63, 347-351 (2014). https://doi.org/10.1002/pi.4521
  19. E. M. Johansson, M. A. Ballem, J. M. Cordoba, and M. Oden, Rapid synthesis of SBA-15 rods with variable lengths, widths, and tunable large pores, Langmuir, 27, 4994-4999 (2011). https://doi.org/10.1021/la104864d
  20. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, and O. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure, J. Am. Chem. Soc., 122, 10712-10713 (2000). https://doi.org/10.1021/ja002261e
  21. Y. Liu, A. Karkamkar, and T. J. Pinnavaia, Redirect the assembly of hexagonal MCM-41 into cubic MCM-48 from sodium silicate without the use of an organic structure modifier, Chem. Commun., 18, 1822-1823 (2001).
  22. S. Jeenpadiphat, E. M. Bjork, M. Oden, and D. N. Tungasmita, Propylsulfonic acid functionalized mesoporous silica catalysts for esterification of fatty acids, J. Mol. Catal. A-Chem., 410, 253-259 (2015). https://doi.org/10.1016/j.molcata.2015.10.002
  23. M. Kruk and M. Jaroniec, Characterization of highly ordered MCM-41 silicas using XRD and nitrogen adsoprtion, Langmuir, 15, 5279-5284 (1999). https://doi.org/10.1021/la990179v
  24. M. Ebrahimi-Gatkash, H. Younsei, A. Shahbazi, and A. Heidari, Amino-functionalized mesoporous MCM-41 silica as an efficient adsorbent for water treatment: Batch and fixed-bed column adsorption of the nitrate anion, Appl. Water Sci., 7, 1887-1901 (2017). https://doi.org/10.1007/s13201-015-0364-1
  25. R. Kishor and A. K. Ghoshal, $N^1$-(3-trimethoxysilylpropyl)diethylenetriamine grafted KIT-6 for $CO_2/N_2$ selective separation, RSC Adv., 6, 898-909 (2016). https://doi.org/10.1039/C5RA20489E
  26. H. Chen and Y. Wang, Preparation of MCM-41 with high thermal stability and complementary textural porosity, Ceram. Int., 28, 541-547 (2002). https://doi.org/10.1016/S0272-8842(02)00007-X
  27. P. Schmidt-Winkel, P. Yang, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, Fluoride-induced hierarchical ordering of mesoporous silica in aqueous acid-syntheses, Adv. Mater., 11, 303-307 (1999). https://doi.org/10.1002/(SICI)1521-4095(199903)11:4<303::AID-ADMA303>3.0.CO;2-M
  28. L. Hermida, A. Z. Abdullah, and A. R. Mohamed, Post synthetically functionalized SBA-15 with organosulfonic acid and Sulfated zirconia for esterification of glycerol to monoglyceride, J. Appl. Sci., 10, 3199-3206 (2010). https://doi.org/10.3923/jas.2010.3199.3206
  29. L. M. Yang, Y. J. Wang, G. S. Luo, and Y. Y. Dai, Functionalization of SBA-15 mesoporous silica with thiol or sulfonic acid groups under the crystallization conditions, Microporous Mesoporous Mater., 84, 275-282 (2005). https://doi.org/10.1016/j.micromeso.2005.05.037
  30. D. E. Kherroub, M. Belbachir, S. Lamouri, and K. Chikh, Cationic ring opening polymerization of octamethylcyclotetrasiloxane using a cost-effective solid acid catalyst (maghnite-$H^+$), Iran. J. Sci. Technol. Trans. Sci., 43, 75-83 (2017).