• Title/Summary/Keyword: Silver ion

Search Result 263, Processing Time 0.024 seconds

Adsorption and Desorption Characteristics of Methyl iodide on Silver ion-Exchanged Synthetic Zeolite at High Temperature

  • Park, Geun-Il;Park, Byung-Sun;Cho, Il-Hoon;Kim, Joon-Hyung;Ryu, Seung-Kon
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.504-513
    • /
    • 2000
  • The adsorption characteristics of methyl iodide generated from the simulated off-gas stream on various adsorbents such as silver ion-exchanged zeolite (AgX), zeocarbon and activated carbon were investigated. An extensive evaluation was made on the optimal silver ion-exchanged level for the effective removal of methyl iodide at temperature up to 38$0^{\circ}C$. The degree of adsorption efficiency of methyl iodide on silver ion-exchanged zeolite is strongly dependent of silver ion-amount and process temperature. The influence of temperature, methyl iodide concentration and silver ion-exchanged level on the adsorption efficiency is closely related to the pore characteristics of adsorbents. It would be facts that the effective silver ion-exchanged level was about 10 wt%, based on the degree of silver utilization for the removal of methyl iodide.

  • PDF

Reuse of Oyster Shell Waste as Antimicrobial Water Treatment Agent by Silver Ion Exchange

  • Jo, Myung-Chan;Byeong-II Noh;Shin, Choon-Hwan
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.185-193
    • /
    • 2000
  • A water treatment agent with antimicrobial activity(Ag-Os) was created by exchanging silver ion($Ag^{+}$) on calcined oyster shell powder. The desorption of the exchanged silver ion was negligible, thereby indicating a stable antimicrobial water treatment agent. The sterilization effect of Ag-Os on underwater microorganisms was then investigated. An MIC (Minimum Inhibitory Concentration) test result indicated that Ag-Os had an excellent sterilization effect on G-germs, such as Escherichia coli and Pseudomonas aeruginosa. Most germs were annihilated with an Ag-Os concentration of 200 ppm and contact time of 60 minutes. The sterilization effect was mainly dependent on the contact time. The zeta potential of the Ag-Os powder adsorbed on sand was measured relative to the concentration of exchanged silver ion. As the concentration of the exchanged silver ion increased, the surface charge density of the anions on the surface of the Ag-Os powder adsorbed on sand also increased. Accordingly, this result indicated that a higher silver ion than ion exchange capacity was present on the particle surface due to adsorption. Consequently, this increased concentration of exchanged silver ion would appear to significantly enhance the sterilization power.

  • PDF

Effect of Silver Ion Solution on the Inhibition of Microcystis Growth (은이온 수용액의 Microcystis 생장 억제 효과)

  • Choi, Gang-Guk;Lee, Sang-Hun;Bae, Kie-Seo;Shin, Jae-Ki;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.183-191
    • /
    • 2008
  • The effect of silver ion solution on the growth of Microcystis aeruginosa UTEX 2388 (cyanobacterium) and Chlorella sp. KCTC AG20136 (green alga) was investigated using separated and mixed culture in filtered natural water and BG11 medium. In separated culture, M. aeruginosa UTEX 2388 and Chlorella sp. KCTC AG20136 were found to be sensitive to 0.01 and 0.1 mg L$^{-1}$ of silver ion, respectively. Also, the silver ion concentrations for the growth inhibition of M. aeruginosa UTEX 2388 and Chlorella sp. KCTC AG20136 in the mixed culture were same in separated culture. Cyanobacteria were more sensitive to the silver ion solution than green algae. In bloom sample, the minimal inhibition concentration of silver ion solution for the low Chl-${\alpha}$ sample (110$\sim$190 ${\mu}g$ L$^{-1}$) and high Chl-${\alpha}$ sample (1,500$\sim$1,900 ${\mu}g$ L$^{-1}$) was about 0.1 and 3.0 mg L$^{-1}$, respectively. The silver ion concentration for the inhibition of algal bloom sample was affected by the algal biomass. In order to use silver ion solution for the control of algal bloom, the silver ion concentration must be determined in consideration of a minimal effect on the environment.

Assessment of Bacteria Removal Using Silver Ion Absorbed Ceramic Filter

  • Kim, Woo-Hang;Smith, James
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.901-907
    • /
    • 2012
  • The objective of this study was to evaluate bacteria removal ability of the metallic silver which was baked silver ion impregnated ceramic filter at heating condition. Silver leaking from baked ceramic filter was tested to sustain bacteria removal for a long time. Silver impregnated ceramic filter could remove E. coli completely at $10^{12}$ MPN/100ml to $10^{13}$ MPN/100ml of influent. However, ceramic filter without silver did not remove E. coli completely under the same condition. After baking, the silver impregnated ceramic filter almost didn't leak out the silver ion from filter. Photo of TEM (Transmission Electron Microscopy) showed that absorbed silver ions remained in ceramic filter after baking process and most of silver were less than 10 nm. According to the increase in the amount of silver in the ceramic filter, removal efficiencies of E. coli were increased but turbidity removal was decreased. It can be accounted that increased removal efficiency of E. coli was from disinfection of silver that is in the ceramic filter. Simulated concentrations of bacteria agree well with the observed experimental effluent concentration data. Moreover, first-order decay coefficients increased to 0.0034/min after silver was added in the ceramic filter. Increase of first-order decay coefficient proves that silver-added ceramic filter can remove bacteria easily.

Studies on the sterilizing effect of the silver ion. (은 이온의 항균작용에 관한 연구)

  • 김덕묵
    • Journal of the Korean Professional Engineers Association
    • /
    • v.20 no.3
    • /
    • pp.26-29
    • /
    • 1987
  • The physical and chemical characteristics of bacteriostatic water filter media are compared to granular activated carbon upon which a silver impregnated. Silver ion that has been chemically impregnated the activated carbon was the bactericidal agent in water filter media. Also, silver Ion that has teen chemically impregnated onto the activated acetate resin was the bactericidal agent in ultrasonic humidifier. Silver impregnated active carbon and silver cartridge will be able to the bactericidal agents for statical water.

  • PDF

Antimicrobial Activity of Silver Ion against Salmonella typhimurium, Staphylococcus aureus and Vibrio parahaemolyticus (Salmonella typhimurium, Staphylococcus aureus, Vibrio parahaemolyticus에 대한 은 이온의 항균효과)

  • 김현진;이승철
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.1163-1166
    • /
    • 2002
  • Antimicrobial activity of silver ion was tested against 3 kinds of food-borne microorganisms-Salmonella typhimurium, Staphylococcus aureus and Vibrio parahaemolyticus-using paper disk and broth medium methods. In paper disk method, silver ion showed antimicrobial activity against S. typhimurium and V. parahaemolyticus at the concentration above 2 ppm and 10 ppm, respectively, where as it was not detected in S. aureus with 20 ppm of silver ion concentration. In broth medium, the growth of S. typhimurium and V. Porahaemolyticus could be retarded at 0.3 ppm and 0.5 ppm of silver ion concentration respectively. In the presence of 1.0 ppm of silver ion, the growth of S. typhimurium was inhibited completely. In S. aureus, the growth was retarded at 5 ppm and was inhibited at l5 ppm completely.

Improvement of Electrical Property and Stability of Silver Nanowire Transparent Electrode Via Ion-beam Treatment (이온빔 처리를 통한 은나노와이어 전극의 전기적 특성과 안정성 향상)

  • Jung, Sunghoon;Lee, Seunghun;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.455-459
    • /
    • 2017
  • The development of flexible transparent electrode has been paid attention for flexible electronics. In this study, we have developed transparent electrode based on silver nanowires with improved electrical property and stability through ion-beam treatment. The energetic particles of ion-beam could sinter junctions of each silver nanowires and etch out polyvinylpyrollidone(PVP) coated on silver nanowires. The sheet resistance of silver nanowire transparent electrode was reduced by 74%, and the resistance uniformity was increased about 3 times after exposure of ion beam. Moreover, the stability at $85^{\circ}C$ of temperature and 85% of relative humidity could be also improved.

The Biocidal Activity of Nano-sized Silver Particles Comparing with Silver Ion (은 이온과의 비교를 통한 나노 은 입자의 항균 특성 연구)

  • Kim, Jee-Yeon;Kim, Sung-Eun;Kim, Jae-Eun;Lee, Jong-Chan;Yoon, Je-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.771-776
    • /
    • 2005
  • In recent days, there is much interest in the biocidal activity of silver since silver is known to be safe and effective as disinfectant and biocidal material against coliforms and viruses. In particular, nano silted silver particles which can be used as effective biocidal material received more attention. Accordingly, it is important to investigate antimicrobial activity and mechanism of nano sized silver particles prepared in a cost-effective manner. In this study, nano sized silver particles were prepared via photoreduction of a silver salt ($AgNO_3$) in the bulk phase of $PEO_{20}-PPO_{70}-PEO_{20}$ (Pluronic 123) block copolymer The antimicrobial efficacy of silver nano particles against E. coli was investigated and compared with that of silver ion as the concentration of silver nano particles, pH ($5.6{\sim}8.2$), temperature ($4^{\circ}C{\sim}35^{\circ}C$) varied in aqueous system. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was used to examine the nature of damaged microorganism with nano sized silver particles and silver ion. This study showed that antimicrobial efficacy of silver nano particles was approximately one twentieth than that of silver ion. It was more biocidal at higher pH in contrast with silver ion. In addition, nano silver particles was demonstrated to disrupt the outer membrane of E. coli, subsequently causing their aggregation. On the other hand, silver ion diffused into the cell damaging the cytoplasmic membrane without disrupting the outer membrane of E. coli.

Comparison of the Effects of Nano-silver Antibacterial Coatings and Silver Ions on Zebrafish Embryogenesis

  • Yeo, Min-Kyeong;Yoon, Jae-Won
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2009
  • To compare the effects of nanometer-sized silver ions and support materials (nano-silver coating material, NM-silver) and silver ions, we exposed zebrafish embryos to both types of nano-silver ions and compared the acute responses during embryogenesis. The amount of silver in the NM-silver (17.16%) was greater than that in the silver ion (4.56%). Both of these materials have different atomic compositions. The silver ion-exposed groups (10 and 20 ppt) showed lower survival rates than the NM-silver-exposed groups (10 and 20 ppt). NM-silver penetrated the skin and blood tube of zebrafish larvae as aggregated particles, whereas, silver ions penetrated the organelles, nucleus and yolk in a spread-out pattern. Micro-array analysis of RNA from zebrafish larvae (72 hours post-fertilization) that were treated with either NM-silver or silver ions, showed alteration in expression of the BMP, activin, TGF-$\beta$, and $GSK3{\beta}$ genes pathway. Additionally, $GSK3{\beta}$ gene pathway for apoptosis that was related with left-right asymmetry. Gene expression changes in the NM-silver or silver ions-treated zebrafish embryo led to phenotypic changes in the hatched larvae, reflecting increased apoptosis and incomplete formation of an axis.

Spectrophotometric analysis of feldspathic porcelain with silver ion (은이온을 첨가한 장석계 도재의 분광 측색학적 평가)

  • Kim, Jihyun;Song, Kyeongwoo;Noh, Sera;Yun, Kyelim;Yun, Kwidug
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.1
    • /
    • pp.20-25
    • /
    • 2015
  • Purpose: This study was evaluated the shade of feldspathic porcelain with various concentration of silver ion. Materials and Methods: The control group was conventional feldspathic porcelain with no silver ion, the experimental groups were the feldpathic porcelain with 5%, 10%, 20%, 30% silver ion. The number of specimens on the each group was 5. Commission Internationale de I'Eclairage (CIE) $L^*a^*b^*$ parameters were recorded twice for each specimen with a spectrophotometer (Model CM-2600d, Minolta, Japan). One-way Anova was used for statistical analysis. Results: L value was similar. a value was increasing and b value was decreasing with silver ion statistically significantly. ${\Delta}E$ was increasing according to silver ion significantly. Conclusion: The shade of feldspahtic porcelain was influenced by silver ion. Ag ion under 10% concentration is acceptable clinically.