• Title/Summary/Keyword: Silt and clay

Search Result 448, Processing Time 0.024 seconds

Characteristic, Genesis and Classification of Soils Derived from Coarse Grain Granitic Materials (조립질(粗粒質) 화강암(花崗巖) 토양(土壤)의 특성(特性)과 생성(生成)·분류(分類))

  • Jung, Sug-Jae;Hyeon, Geun-Soo;Moon, Yong-Taik;Jo, Young-Kil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.1
    • /
    • pp.3-9
    • /
    • 1994
  • Characterstics, genesis and classification of soils derived from coarse grain granitic materials were discussed with four soil series, such as Samgag, Sangju. Sachon and Yecheon which were distributed over the area of Gangdae-Ri, Nengseo-Myeon, Yeoju-Gun, Gyunggi-Do. The results are as follows. 1. Samgag, Sangju, Sachon and Yecheon had a soil of excessively, well, imperfectly and poorly drained, thus they had a soil drainage sequence. 2. Soil textural class were from sandy loam to loam. Silt and clay content were increased with descending to the local bottom, while sand content was decreased. 3. Soils were very strongly to strongly acid and OM, CEC, exchangeable cation, and available $P_2O_5$ in soils seemed to be increased with ascending to the local boctom. 4. Kaolinite and Quartz were the dominant clay mineral and the other was Vermiculite and Illite. 5. Samgag was classified as Typic Dystrochrepts, Sangju as Dystric-Fluventic Eutrochrepts, Sachon as Aeric-Fluventic Halpaquepts, and Yecheon as Fluventic Haplaquepts.

  • PDF

Characteristics of Particle Composition and Organic Matter Distribution for Tidal Flat Sediments in the Saemankeum Area (새만금 갯벌의 입도조성과 유기물질 분포특성)

  • YOU Sun-Jae;KIM Jong-Gu;CHO Eun-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.1
    • /
    • pp.49-54
    • /
    • 2003
  • This study was conducted to evaluate characteristics of particle composition and organic matter distribution for tidal flat sediments in the Saemankeum area. The tidal flat sediments consist of predominantly sand and a little of silt, whereas the content of clay was very low. The analyzed values of particles of tidal flat sediments were in the range of $4.60\~10.90\;{\phi}$ for mean size and $-0.1\~1.75\;{\phi}$ for sorting and $-1.0\~0.92\;{\phi}$ for skewness and $0.27\~6.75\;{\phi}$ for kurtosis. The tidal flat sediments are interpreted as representing significant effect of the environmental change due to the construction of Saemankeum embankment. The ORP was in the range of -133$\~$200 (mean 73) mV. But 24 stations of the total stations showed reduction condition, The concentration of CODs was in the range of 17.54$\~$6,176.3 mg/kg. The ratio of C/S was 0.02$\~$0.45 (mean 0.24). And the Saemankeum tidal flat sediment was a little effected by input organic pollutants from upper site area. Conclusively, conservation of the Saemankeum tidal flat sediment was requested because it is for the growing fishery and low organic matter.

A Study on the Wise Use and the Management of Intertidal Environment - With Focus on Kanghwa island mudflat by satellite image interpretation and sediment analysis - (조간대 지역의 올바른 관리 및 이용방안에 관한 연구)

  • Park, Eui-Joon;Seo, Jong-Chul
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.2
    • /
    • pp.82-96
    • /
    • 2001
  • The purpose of this study is to investigate the wise use and the management of intertidal environment. For tills purpose, we selected the Kanghwa island mudflat which is one of the most important intertidal region in Korea peninsula. The main research method is surface sediment and several map analysis. The results are as follows. (1) The study area is worldwide coastal wetland in view of ecology and geomorphology. But most of the salt marsh has been reclaimed since Japanese colonial period, the study area is mainly composed of mudflat. (2) The mean tidal regime of study area is 7.3m. From this tidal regime, the study area is subdivided into four distinct areas: the high intertidal area the middle intertidal area the low intertidal area and the shallow sea area terrestrial area near mudflat. (3) The mean particle size of surface sediment is sand 41.5%, silt 47.3%, clay 11.2%. This particle size pattern indicates the ecological characteristics of surface sediment of the study area. The proportion of clay is increasing to the open sea. (5) The pursuit of the wise use and the management must be implemented by the consideration of not only ecologic and sedimentary characteristics but also of the eco-tour site plan. And the entire use and management subject is different in each area.

  • PDF

Soil Physical and Hydraulic Properties over Terrace Adjacent Four Major Rivers

  • Lee, Kyo Suk;Lee, Jae Bong;Lee, Myoung Yun;Joo, Ri Na;Lee, Dong Sung;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.235-241
    • /
    • 2016
  • The soil does not only serve as a medium for plant growth but also for engineering construction purposes. It is very weak in tension, very strong in compression and fails only by shearing. The behaviour of the soil under any form of loading and the interactions of the earth materials during and after any engineering construction work has a major influence on the success, economy and the safety of the work. Soils and their management have therefore become a broad social concern. A limitless variety of soil materials are encountered in both agronomy and engineering problems, varying from hard, dense, large pieces of rock through gravel, sand, silt and clay to organic deposits of soft compressible peat. All these materials may occur over a range of physical properties, such as water contents, texture, bulk density and strength of soils. Therefore, to deal properly with soils and soil materials in any case requires knowledge and understanding of these physical properties. The desired value of bulk density varies with the degree of stability required in construction. Bulk density is also used as an indicator of problems of root penetration,soil aeration and also water infiltration. This property is also used in foundation engineering problems. While not conforming to standard test procedures, this work attempts to add to the basic information on such important soil parameters as water content, bulk density.

The Records of Origin and Transport of Sediments From the Past to the Present in the Yellow Sea

  • Yi, Hi-Il;Chun, Jong-Hwa;Shin, Im-C.;Shin, Dong-Hyeok;Jou, Hyeong-Tae
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.96-106
    • /
    • 2004
  • A total of 116 surface sediment samples were obtained on the Yellow Sea and analyzed for grain size and geochemical elements in order to interpret the present sediment transportation. Thirty-nine cores and 3,070 line-km shallow seismic profiles are analyzed for sedimentary records of Yellow Sea in the past. Results show that the boundary of sediment transport between Korean side and Chinese side is about between $123^{\circ}E$ and $124^{\circ}E$. The similar result is produced from Shi et al. (in this publication). Two cyclonic patterns of surface sediments are recognized in the northeastern and southwestern Yellow Sea, while the strong front zone of the mud patch and sandy sediments are found in the southeastern Yellow Sea (the southwestern part of Korean coasts). The formation of fine-particle sediment packages, called for Northwest Mudbelt Deposit (NWMD), Hucksan Mudbelt Deposit (HSMD) and Jeju Mudbelt Deposit (JJMD), are resulted from eddies (gyres) of water circulations in the Yellow Sea. NWMD has been formed by cyclonic (anticlockwise) eddy. NWMD is composed of thick, homogeneous, relatively semi-consolidated gray clay-dominated deposit. On the other hand, HSMD and JJMD are formed by anticyclonic (clockwise) eddies. They are thick, homogeneous, organic-rich gray, silt-dominated deposit. Both core and surface sediments show that the middle zone across Chinese and Korean side contains bimodal frequency of grain-size distribution, indicating that two different transport mechanisms exist. These mud packages are surrounded by sand deposits from both Korea and China seas, indicating that Yellow Sea, which is the shallow sea and epicontinental shelf, is formed mostly by sand deposits including relict sands. The seismic profiles show such as small erosional/non-depositional channels, sand-ridges and sand-waves, Pleistocene-channelfilled deposits, a series of channels in the N-S major channel system, and thick Holocene sediment package, indicating that more complex sedimentary history exists in the Yellow Sea.

Assessment of Heavy Metal Concentrations in Greenhouse Soils of Gyeongnam Province

  • Son, Daniel;Cho, Hyeon-Ji;Heo, Jae-Young;Lee, Byeong-Jeong;Hong, Kwang-Pyo;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.383-390
    • /
    • 2017
  • Heavy metal contamination of soil might be a cause of serious concern due to the potential health impacts of consuming contaminated products. In this study, the total content of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn, As, and Hg) in soils was analyzed, and the difference of heavy metal contents depending on crops, soil characteristics, and topography was compared in 169 greenhouse soils obtained from Gyeongnam Province. The concentrations of the heavy metals were $0.25mg\;kg^{-1}$ (ranged 0.01~0.44) for Cd, $28.94(0.53{\sim}72.63)mg\;kg^{-1}$ for Cr, $26.03(0.5{\sim}166.13)mg\;kg^{-1}$ for Cu, $14.91(1.27{\sim}33.22)mg\;kg^{-1}$ for Ni, $15.76(0.43{\sim}57.1)mg\;kg^{-1}$ for Pb, $119.72(6.33{\sim}239.39)mg\;kg^{-1}$ for Zn, $2.54(0.01{\sim}23.57)mg\;kg^{-1}$ for As, and $0.049(0.012{\sim}0.253)mg\;kg^{-1}$ for Hg in topsoils. The concentrations of Pb and As in topsoil were highest in green pepper and those of Cd, Cr, and Ni were highest in melon. In addition, the concentrations of Cr and Ni were highest in diluvial terrace compared with the other topographies. Higher concentrations of Cd, Cr, and Ni were found in silty clay loam and silt loam soils than sandy loam and loam soils.

Investigation on the Inhabitation Environments and Growth Conditions of Machilus thunbergii Community in Pyonsanbando (변산반도내 후박나무군락의 서식환경 및 생육실태에 관한 조사연구)

  • 박종민
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.3
    • /
    • pp.242-252
    • /
    • 1998
  • The inhabitation environments and growth conditions of Machilus thunbergii community in the Pyonsanbando located at southwestern area in Korea were examined and analyzed to provide some practical data to be used to establish measures for long term succession monitoring, protection and sustainable management. The Machilus thunbergii community are located at Kyokpo-ri, Pyonsan-myon, Puan-gun(35$^{\circ}$35′24"N~35$^{\circ}$ 42′30"N, 126$^{\circ}$28′18"E~126$^{\circ}$40′40"E). Within the Pyonsanbando area the mean temperature is 12.4$^{\circ}C$, the warmth index 101.5$^{\circ}C$.month, the coldness index -12.3$^{\circ}C$ month and the annual precipitation 1,016mm. The soil within the community is silt loam or clay loam and so fertile. 30 species and 1 varieties of 21 families inhabited at the community. There were 18 grown trees and 131 saplings of Machilus thunbergii within the community. The mean basal diameter, mean height, and crown width of grown trees was measured to be 57.4cm, 7.4m and 9.0~9.8m respectively. And 9 trees were full flowering, 2 trees small flowering here and there, and 7 trees non flowering in 1998. The mean branch growth length was 8.3cm, mean leaf area 18.3$\textrm{cm}^2$, mean inflorecence length 9.3cm, mean fertilization 14.5% and mean seed diameter 7.6mm. Further rich management measure and investigation were recommended such as sapling protection, signboard construction, soil erosion controlling and regular monitoring within the community.

  • PDF

Effects of mining activities on Nano-soil management using artificial intelligence models of ANN and ELM

  • Liu, Qi;Peng, Kang;Zeng, Jie;Marzouki, Riadh;Majdi, Ali;Jan, Amin;Salameh, Anas A.;Assilzadeh, Hamid
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.549-566
    • /
    • 2022
  • Mining of ore minerals (sfalerite, cinnabar, and chalcopyrite) from the old mine has led in significant environmental effects as contamination of soils and plants and acidification of water. Also, nanoparticles (NP) have obtained global importance because of their widespread usage in daily life, unique properties, and rapid development in the field of nanotechnology. Regarding their usage in various fields, it is suggested that soil is the final environmental sink for NPs. Nanoparticles with excessive reactivity and deliverability may be carried out as amendments to enhance soil quality, mitigate soil contaminations, make certain secure land-software of the traditional change substances and enhance soil erosion control. Meanwhile, there's no record on the usage of Nano superior substances for mine soil reclamation. In this study, five soil specimens have been tested at 4 sites inside the region of mine (<100 m) to study zeolites, and iron sulfide nanoparticles. Also, through using Artificial Neural Network (ANN) and Extreme Learning Machine (ELM), this study has tried to appropriately estimate the mechanical properties of soil under the effect of these Nano particles. Considering the RMSE and R2 values, Zeolite Nano materials could enhance the mine soil fine through increasing the clay-silt fractions, increasing the water holding capacity, removing toxins and improving nutrient levels. Also, adding iron sulfide minerals to the soils would possibly exacerbate the soil acidity problems at a mining site.

Evaluation of Watershed Stability by the Forest Environmental and Stream Morphological Factors (산림환경 및 하천형태인자에 의한 유역안정성 평가)

  • Jung, Won-Ok;Ma, Ho-Seop
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.4
    • /
    • pp.1-11
    • /
    • 2001
  • This study was carried out to analyze the characteristics of forest environmental and stream morphological factors by using the quantification theory(I) for evaluation of the watershed stability. Present annual mean sediment yield of erosion control dams were investigated in 167 sites of erosion control dam constructed during 1986 to 1999 in Gyeongbuk. The results obtained from this study were summarized as follows; According to the coefficients of partial correlation, each factor affecting to sediment was shown in order of gravel contents, number of first streams order, number of total streams, length of total streams, forest type, length of main stream, parent rock, stand age, soil texture, stream order, slope gradient, soil depth and aspect. Descriptions of class I were as follow; Igneous rock of parent rock, hardwood stands of forest type, less than 20 year of stand age, less than 30cm of soil depth, sandy clay loam of soil texture, more than 41% of gravel contents, south~east of aspect, 2,501~3,500m of length of main stream, 21~25 of number of total streams, 5,501~10,000m of length of total streams, 3 or more than 4 of stream order, more than 16 of number of first stream orders and more than $31^{\circ}$ of slope gradient. Descriptions of class II were as follow; Metamorphic rock of parent rock, coniferous stands of forest type, more than 25 year of stand age, 31~40cm of soil depth, silt loam of soil texture, 11~20% of gravel contents, north~west of aspect, 2,501~3,500m of length of main stream, 16~20 of number of total streams, 3,501~5,500m of length of total streams, 3 of stream order, 11~15 of number of first stream orders and more than $31^{\circ}$ of slope gradient. Descriptions of class III were as follow; Sedimentary rock of parent rock, mixed stands of forest type, more than 25 year of stand age, more than 51cm of soil depth, silty clay loam of soil texture, less than 10% of gravel contents, south~west of aspect, less than 500m of length of main stream, less than 5 of number of total streams, less than 1,000m of length of total streams, less than 1 of stream order, less than 2 of number of first stream orders and less than $25^{\circ}$ of slope gradient. The prediction method of suitable site for erosion control dam divided into class I, II, and III for the convenience of use. The score of class I evaluated as a very unstable area was more than 8.4494. A score of class II was 8.4493 to 6.0452, it was evaluated as a moderate stable area, and class III was less than 6.0541, it was evaluated as a very stable area.

  • PDF

Effect of Soil Moisture Content on Growth of Ginger (토양수분함량(土壤水分含量)이 생강(生薑) 생육(生育)에 미치는 영향(影響))

  • Jun, Jang-Hyeop;Nam, Jeong-Kwon;Lee, Kyung-Bo;Cho, Soo-Youn;Shim, Jae-Sung;Yoon, Wha-Mo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.129-134
    • /
    • 1997
  • Effect of soil moisture level on the growth of ginger plant was investigated through a pot experiment. The soil used for this study was collected from a newly reclaimed hillside land. The soil was a silty clay loam(19% sand, 57% of silt and 24% of clay), acidic in soil rection(pH 4.7, in $H_2O$) and low in organic matter content(1.2%). Soil moisture levels selected for the experiment were 10, 15, 20, 25, and 30% on weight basis. Under the soil moisture of 20-25%, the emergence ratio was 80-100%, 25 days alter planting. The performance of above ground parts was best under 20-25% of soil moisture. When the soil moisture content was far from 25%, high or low, the die out of above ground parts of ginger tended to increase. Under 20-25% of soil moisture the growth of roots was best and the occurrence of root rot was minimal.

  • PDF