• Title/Summary/Keyword: Silt

Search Result 970, Processing Time 0.029 seconds

An Fundamental Study on the Earth Wall Material Development by using of Lime Composition and Earth (석회복합체와 흙을 이용한 흙벽체 재료 개발에 관한 기초적 연구)

  • Hwang, Hey zoo;Kang, Nam Yi
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.115-121
    • /
    • 2010
  • Lime was the solidifier mostly used at the fields of construction and civil works in the past. however, the development of Portland cement remarkably reduced the use of it. Recently as the concernment on circumstances gets higher, lime wined attention again as an eco-friendly material and was used at earth-using construction. This study examined the physical and chemical capacity of lime complexes with lime capacity improved, and performed fundamental study on the way to concretize by mixing it with earth. As a result, lime complex pressure strength was lower than cement pressure strength but it showed the possibility that its strength was improved by W/B control. The measurement of XRD after paste formation confirmed a compound generated by the reaction of Ca2+ion and Si, Al, and Fe from pozzolan reaction. A earth wall experiment by using lime complexes and earth showed that the higher, WB or the lower the quantity of unit combined materials, the lower the pressure strength was. The maximum pressure strength was maximum 11MPa when the quantity of unit combined materials was 450. It is because the composed earth particles had a high content of micro powder less than silt, so a lot of combination are demanded to secure fluidity. As a result of peptization experiment, after hardening, the material was not dissolved, which informed of the possibility of use as an outer subsidiary material. If the material is hardened by mold formation method, natural hardening crack appears. Cast expresses smart surface quality and enables to design for multiple purpose. The result shows the possibility of construction of low-story structures by using earth wall made of lime complexes and earth.

Development and Evaluation of a Dust Generator Using Soil Samples (토양 분진발생장치의 개발과 평가)

  • Lee, Ji-Yeon;Lee, Ki-Young
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.383-390
    • /
    • 2010
  • Exposure to fugitive dust can contribute to several respiratory health problems, and proper sampling of fugitive dust is necessary to assess exposure. However, field sampling of soil dust encounters problems from spatial and temporal differences in soil properties, field operations, and meteorological conditions. To minimize these problems, we designed a dust generator that simulates dust generation from soil. The dust generator consisted of a rotating chamber where soil samples were loaded and tumbled, and a settling chamber, where airborne soil dust samples were collected. As standard operating conditions, we decided on 2 g soil mass, 10 min sampling time, and 20 rpm rotating speed, with a flow rate of 30 l/min, based on three common soil textures of loam, sandy loam and silt loam. To evaluate optimal operating conditions, we used mixtures of Joomoonjin silica sand and clay. Although the average $PM_{10}$ concentration of Joomoonjin silica sand was low, dust concentrations were increased by an increased content of clay. The dust concentrations were consistent across repeated experiments, and showed similar concentration profiles during the sampling time with mixtures of clay and sand (coefficient of variation was $13.6{\pm}w;7.1%$). The results demonstrated that these standard operating conditions were suitable for the dust generator, which can be used to investigate variations in soil properties that affect dust production and potential potency of fugitive dust exposure.

Marine Environmental Characteristics of Seagrass Habitat in Seomjin River Estuary (섬진강 하구역 잘피(Z. marina)서식지의 해양환경 특성)

  • Ji, Hyeong-Seok;Seo, Hee-Jeong;Kim, Myeong-Won;Lee, Moon Ock;Kim, Jongkyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.236-244
    • /
    • 2014
  • This study considered a seagrass habitat in order to analyze the characteristics of a marine environment of seagrass located in the Seomjin river estuary, through an analysis of the distribution of the water depth, field observation, and three-dimensional numerical experiments using an EFDC model. The seagrass habitat was usually distributed at D.L(-) 0.5~0.0 m, and was hardly seen in the intertidal zone higher than that range. The distribution of the water temperature was within the range of $7.0{\sim}23.2^{\circ}C$, and the seagrass was demonstrated to have a strong tolerance to changes in the water temperature. In addition, the salinity distribution was found to be 27.2~31.0 psu, with suspended solids of 32.1 mg/L, which were higher than the previous research results (Huh et al., 1998), implying that there may be a reduction in the amount of deposits caused by the suspended solids. As for the sedimentary facies, they were comprised of 62.7% sand, 19.1% silt, and 18.2% clay, indicating that the arenaceous was superior and the sedimentary facies were similar to that of Dadae Bay. According to a numerical experiment, the maximum tidal current was 75 cm/s, while the tidal residual current was 10 cm/s, confirming that it sufficiently adapted to strong tidal currents. The erosion and deposition are predicted to be less than 1.0 cm/year. Thus, it is judged that the resuspension of sediments due to tidal currents and the changes in sedimentary facies are insignificant.

Characteristics of Dynamic Compaction Energy for a Non-plastic Dredged Soil (비소성 준설토의 동다짐 에너지 특성 연구)

  • Hwang, Seong Chun;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.110-117
    • /
    • 2011
  • Seashore landfill projects use undersea pump dredging method for construction of airport and factory site. Coarse grain soil from the dredging is considered for use at inland. West sea shore bottom consists of primarily coarser grained silt-sand and this component contains far more percentage than is the case with East sea and South sea area. This soil shows very different characteristic at consolidation and compaction behavior. This research targets to utilize this type of dredging soil. Test specimen is from West sea (Saemangum) dredged soil landfill site. Model analysis is done for getting prediction of original soil relative density and N-value from dynamic compaction energy variance. Dynamic compaction energy is calculated for efficient foundation design.

Turbidity Meter Calibrations Based on Grain Size Distribution of Trapped Suspended Material (포획된 부유물질의 입도분포를 고려한 탁도계 검교정)

  • 조홍연;김백운
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2003
  • Turbidity meter calibrations were conducted using bottom sediment and suspended material collected with a vertical array of sediment traps at the coastal water off Gaduk Island. Compared to the bottom sediment comprising sand fraction of approximately 6%, trapped suspended material was composed entirely of silt and clay fractions and showed a tendency to get finer as elevation from the sea-bed increases. Slope parameter of linear regression due to bottom sediment was of minimum value and values of those due to suspended material increased gradually as the height of sediment trap increases (i.e., sediment size decreases). This result shows that turbidity meter calibration using bottom sediment can cause an overestimation error in the calculation of suspended sediment concentration and that the error can reach up to 25% in case of this study. Therefore, it is suggested that the use of a corrected calibration curve based on grain size distribution of suspended material instead of bottom sediment may reduce the measurement error of suspended sediment concentration.

Study on the Stability of Over Break in Tunnel (여굴이 큰 터널의 안전성에 관한 연구)

  • Kim, Dong-Baek;Kwon, Ki-Jun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.2 s.21
    • /
    • pp.45-50
    • /
    • 2006
  • When we build the tunnel, occasionally, the blasted section exceed the designed section because of geological properties and the lack of blasting technologies, and the exceed section is remained as over break after the construction of tunnel lining. When the underground water leaks with silt and clay through the cracks of rocks, the large over break cause a structural stability problem in tunnel, and the back charging of over break is very important subject, because the undoing of back charging cause the drop of crashed rocks and serious problem in the stability of tunnel lining. Therefore, the theory of blast is studied and purpose the structural analysis of back charging and propose the safe method about the drop of crashed rocks.

Mineralogical and Geochemical Characteristics of Ancient Field Soil in Jeongdongri as Ceramic Raw Materials of the Baekje Kingdom (백제 와전재료로서 정동리 고토양의 광물 및 지구화학적 특성)

  • Jang, Sung-Yoon;Lee, Chan-Hee
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.543-553
    • /
    • 2010
  • This study was focused on the mineralogical and geochemical characteristics of field soil of the Baekje Kingdom from K wongbawigol site in Jeongdongri, Buyeo and whether the bricks from Songsanri Tombs and Muryung's Royal Tomb were made of soil from this site. Soil samples show the similar size fraction as a silt loam and acidic soil, whereas some samples have the enrichment of organic matter, P and S. Also, they have similar geochemical behavior of elements and similar mineral phases consisting of quartz, plagioclase, orthoclase, vermiculite, mica and kaolinite. The enrichment of iron oxide is found in some soil layer, including the iron oxide mottling and precipitation along plant roots and they are attributed to repeat oxidation and reduction environments due to flooding and drainage of field soil. It's anthropogenic alteration by human activity. Especially, it is assumed that the concentration of the iron oxides found in bricks from Muryung's Royal Tomb and Songsanri Tombs is the additional evidence that soil in this study is probably the raw materials of those bricks.

Comparison of Carbon Sequestration Potential of Winter Cover Crop Cultivation in Rice Paddy Soil

  • Lee, Seul-Bi;Haque, Mozammel;Pramanik, Prabhat;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.234-242
    • /
    • 2011
  • BACKGROUND: Cultivation of winter cover crops is strongly recommended to increase land utilization efficiency, animal feeding material self-production, and to improve soil and environmental quality. METHODS AND RESULTS: Four major winter crops (barley, Chinese milk vetch, hairy vetch, and rye) having different C/N ratio were seeded in silt loam paddy soil in the November 2007 and the aboveground biomass was harvested on the late May 2008 to evaluate its effectiveness as green manure, and root biomass distribution was characterized at the different depth (0-60 cm) to study its effect on physical properties and carbon sequestration in soil. During this experiment, the naturally growing weed in the rice paddy soil in Korea, short awn foxtail (Alopecurus aequalis Sobol), was considered as control treatment. Above-ground biomass of all cover crops selected was significantly higher than that of the control treatment (2.8 Mg/ha). Comparatively higher above-ground biomass productivity of rye and barley (15.8 and 13.5 Mg/ha, respectively) suggested that these cover crops possibly had the highest potential as a green manure and animal feeding material. Root biomass production of different cover crops followed the same trend as that for their above ground biomass. Rye (Secale cereal) might have the highest potential for soil C accumulation (7893 C kg/ha) by root biomass development, and then followed by barley (6985 C kg/ha), hairy vetch (6467 C kg/ha), Chinese milk vetch (6671 C kg/ha), and control (5791 C kg/ha). CONCLUSION(s): Cover crops like rye and barley having high biomass productivity might be the most effective winter cover crops to increase organic carbon distribution in different soil aggregates which might be beneficial to improve soil structure, aeration etc. and C sequestration.

Saturated Hydraulic Conductivity of Surface Seals Estimated from Computed Tomography-Measured Porosity (고해상도 X-ray CT 를 이용한 토양표면 피막의 공극율 및 포화수리전도도 측정)

  • Lee, Sang-Soo;Gantzer, C.J.;Thompson, A.L.;Anderson, S.H.;Ketchum, R.A.;Ok, Yong-Sik
    • 한국환경농학회:학술대회논문집
    • /
    • 2011.07a
    • /
    • pp.207-222
    • /
    • 2011
  • Relationships between soil saturated hydraulic conductivity ($K_s$) and porosity (${\phi}$) have been developed over many years; however, use of these relationships for evaluating rain-induced seals is limited mainly because of difficulties in estimating seal pore-size characteristics. The objectives of this study were to evaluate the $K_s$ of soil surface seals over a range of thicknesses, where seal thickness was determined using a High-Resolution-Computed-Tomography (HRCT) scanner, and to investigate relationships between $K_s$ and ${\phi}$ of developing seals in samples with equivalent diameters (e.d.) ${\geq}15\;{\mu}m$. A Mexico silt loam soil was packed to a bulk density (${\rho}_b$) of $1.1\;Mg\;m^{-3}$ in cylinders 160-mm i.d. by 160-mm long and subjected to $61-mm\;h^{-1}$ simulated rainfall having a kinetic energy (KE) of $25\;J\;m^{-2}\;min^{-1}$ for 7.5, 15, 30, and 60 min to create a range in seal development. Thicknesses of the seal layers were determined by analysis of HRCT images of seals. The $K_s$ values of the seals were estimated using an effective $K_s$ value ($K_{s-eff}$). The $K_s-{\phi}$ relationship was described by a Kozeny and Carmen equation, $K_s=B{\phi}^n$; where B and n are empirical constants and n = 31. This approach explained 86% of the variation between $K_s$ and ${\phi}$ within the soil seals. Knowledge of surface seal information and hydraulic conductivity can provide useful information to use in management of sites prone to sealing formation.

  • PDF

진해만 안골 바지락 양식장 대형저서동물 군집의 구조

  • Park Yeong Min;Yun Byeong Seon;Kim Gu Hwan;Yun Seong Gyu
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2003.11a
    • /
    • pp.92-97
    • /
    • 2003
  • Community structure of macrobenthos was studied on Angol clam farming ground of Chinhae Bay in the southern coast of Korea. Macrobenthos samples were collected monthly using a quadrate at each station from March 1998. Macrobenthos samples were seived by 1.0mm mesh seive. Mean grain size was 0.267 mm. A total of 111 macrobenthos species were sampled with a mean density of 1,651ind/m$^2$and biomass of 1466.7wwt.g/m$^2$. Annelida was density-dominant faunal group with a mean density of 818ind/m$^2$, comprising of 49.6% of the total density of the macrobenthos. It was followed by Mollusca with 660ind/m$^2$(40.0%). Mollusca was biomass-dominant faunal group. Major dominant species in the number of individual were Ruditapes philippinarum (375ind/m$^2$), Batillaria cumingi (208ind/m$^2$), Cirrformia tentaculata (167ind/m$^2$), Ceratonereis erithraeensis (151ind/m$^2$), Capitella capitata (111ind/m$^2$) and Sigambra tentaculata (91ind/m$^2$). Major dominant species in the biomass were Ruditapes philippinarum (1156.6wwt.g/m$^2$), Batillaria cumingi (111.0wwt.g/m$^2$) and Cyclina sinenis (106.2wwt.g/m$^2$). The species diversity was increased gradually during the study period. Increasing of species diversity was due to not only increasing of number of species but also decreasing of dominance of some polycheates. Contents of silt-clay was increased gradually in the intertidal zone.

  • PDF