• Title/Summary/Keyword: Silicone composite

Search Result 105, Processing Time 0.025 seconds

A Study on the Si-SiC Composites Fabricated by Pressureless Powder Packing Forming Method (무가압 분말 충전 성형법에 의해 제조된 Si-SiC 복합체에 관한 연구)

  • 박정현;임은택;성재석;최헌진;이준석
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.710-718
    • /
    • 1995
  • The new forming method, Pressureless Powder Packing Forming Method was applied to the manufacturing of reaction sintered SiC. After the experiments of vibratory powder packing and binder infiltration, the abrasive SiC powder of which mean size is 45${\mu}{\textrm}{m}$ was selected to this forming method. Uniform green bodies with porosity of 45% and narrow pore size distribution could be formed by this new forming method. Also, complex or varied cross-sectional shapes could be easily manufactured through the silicone rubber mould used in this forming method. Maximum 15 wt% amorphous carbon was penetrated into green body by multi impregnation-carbonization cycles. And reaction-bonded SiC was manufactured by infiltration of SiC-carbon shaped bodies with liquid silicon.

  • PDF

The Analysis of Pressure Relief Technology for ZnO Arrester (ZnO 피뢰기의 Pressure relief 기술 분석)

  • Kim, I.S.;Han, S.W.;Cho, H.G.;Yoo, H.Y.;Kim, H.S.;Park, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1450-1452
    • /
    • 1998
  • The chief advantage of polymer arrester, from a handling viewpoint, design of pressure relief, anti-contamination, electrical failuer was reduced by polymer arrester. The life expectancy of polymer arrester depend on a number of design factor. This paper introduced and study : new material housing (silicone composite, EPDM, EPA...), cap type sealing structure, knuckle type electrode, stress relief housing, supporting insulator and sub parts, of polymer arrester.

  • PDF

Durability and Evaluation of Plastic Insulator for the Outdoor (옥외용 프라스틱 애자의 내구성과 평가)

  • 조한구;강동필;한동희;김인성
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1993.10a
    • /
    • pp.97-102
    • /
    • 1993
  • The application of epxy composite materials for the outdoor insulating systems has some significant advan-tages compared with conventional inorganic materials, that is low weight in combination with high mechanical strength, small dimensions and design versatility. The paper describes the results of high voltage investigations carried out different aging types of epoxy resin insulator and silicone grease coating. The insulators have been exposed 3000 hours to weather-o-meter and 12 months to outdoor. In this connection, the main study of paper is form the basis of develop-ment of principal technologies of epoxy composites which ard: (1)manufacturing of insulator, (2)high vol-tage testing under dry and wet condition, (3)mechani-cal properties, (4)accelerated weather-ometer test and outdoor exposed, artificial polution.

  • PDF

Preparation and Properties of Silicone-Modified Epoxy Coating Materials (실리콘 변성 에폭시 코팅 액의 제조와 물성)

  • Kim, Jin Kyung;Bak, Seung Woo;Hwang, Hee Nam;Kang, Doo Whan;Kang, Ho Jong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.352-356
    • /
    • 2014
  • PDMS modified epoxy resin with epoxy group (EMPDMS) was prepared from the reaction of ${\alpha},{\omega}$-aminopropylpolydimethylsiloxane and diglycidyl ether of bisphenol-A (DGEBA) based epoxy resin, and PDMS modified epoxy hybrid compound (EMPDMSH) was prepared by introducing alkylesteraminopropyl alkoxy silane to EMPDMS. Their structures were characterized using FT-IR, $^1H$-NMR and $^{29}Si$-NMR. Coating materials were prepared by mixing EMPDMSH base and solvent. Physical properties of the coating materials coated on epoxy/glass fiber composite film were measured according to the content of PDMS in EMPDMSH. Contact angle of coating film was increased 30 to 71 degree. Adhesive property of coating film was 5B degree better then epoxy or acrylate coating materials, and surface roughness was decreased as increasing in EMPDMSH.

Studies on the Removal of Volatile Organic Compounds in Wastewater using PTMSP/PDMS-PEI Composite Membrane by Pervaporation (PTMSP/PDMS-PEI 복합막을 이용한 폐수중의 휘발성 유기화합물 제거에 관한 연구)

  • Kweon, Chang-Oh;Paik, Gwi-Chan;Chun, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3532-3540
    • /
    • 2011
  • In order to improve flux of PTMSP/PDMS dense membrane, PTMSP/PDMS-PEI composite membrane with PEI support was prepared by phase inversion process and dip coating. These membranes were evaluated in terms of the removal of volatile organic compounds such as PCE, TCE, chloroform, 1,1,1-trichloroethane from wastewater by pervaporation. The selectivity and flux of PTMSP/PDMS dense membranes was in the range of 216.2 to 2394.4 and 244.3 to 428.2g/m2h, respectively. And pervaporation property of PTMSP/PDMS-PEI composite membrane was in the range of 215.5 to 2404.2 and 390.4 to 728.6g/m2h, respectively. PTMSP/PDMS-PEI composite membrane has remarkably greater flux than dense membranes with similar selectivity. It was possible for polymeric membranes used in this study to remove PCE selectively which is dissolved small quantity in water among other separable solutes. PTMSP/PDMS-PEI composite membrane showed the best performances among the silicone polymeric membranes, and has better durability and mechanical strength than dense membranes. PTMSP/PDMS-PEI composite membrane should be a useful candidate for the removal of volatile organic compounds dissolved in wastewater.

Development of bio-inspired hierarchically-structured skin-adhesive electronic patch for bio-signal monitoring (생체정보 진단을 위한 생체모사 계층구조 기반 피부 고점착 전자 패치 개발)

  • Kim, Da Wan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.749-754
    • /
    • 2022
  • High adhesion and water resistance of the skin surface are required for wearable and skin-attachable electronic patches in various medical applications. In this study, we report a stretchable electronic patch that mimics the drainable structure pattern of the hexagonal channels of frog's pads and the sucker of an octopus based on carbon-based conductive polymer composite materials. The hexagonal channel structure that mimics the pads of frogs drains water and improves adhesion through crack arresting effect, and the suction structure that mimics an octopus sucker shows high adhesion on wet surfaces. In addition, the high-adhesive electronic patch has excellent adhesion to various surfaces such as silicone wafer (max. 4.06 N/cm2) and skin replica surface (max. 1.84 N/cm2) in dry and wet conditions. The high skin-adhesive electronic patch made of a polymer composite material based on a polymer matrix and carbon particles can reliably detect electrocardiogram (ECG) in dry and humid environments. The proposed electronic patch presents potential applications for wearable and skin-attachable electronic devices for detecting various biosignals.

Self-Sensing and Interfacial Evaluation of Ni Nanowire/Polymer Composites Using Electro-Macromechanical Technique (전기적 미세역학적 시험법을 이용한 Ni nanowire강화 고분자 복합재료의 자체 감지능 및 계면 물성평가)

  • Kim, Sung-Ju;Yoon, Dong-Jin;Hansen George;DeVries K. Lawrence;Park, Joung-Man
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.20-27
    • /
    • 2006
  • Self-sensing and interfacial evaluation of Ni nanowire/polymer composites were investigated using electro-macromechanical technique, which can be used fur a feasible sensing measurement on tensile and compressive loading/consequent unloading, temperature, and humidity. Mechanical properties of Ni nanowire with different aspect ratio and adding contents in either epoxy or silicone composites were measured indirectly using electro-pullout test under uniform and non-uniform cyclic loadings. Comparing apparent modulus with the conventional mechanical tensile modulus of Ni nanowire/epoxy composites, the trends were consistent with each other. Ni nanowire/epoxy composites showed the sensing response on humidity and temperature. Self-sensing on applied tensile and compressive loading/unloading was also responded for Ni nanowire/silicone composites via electrical contact resistivity showing the opposite trend between tension and compression. It can be due to the different electrically-interconnecting mechanisms of dispersed Ni nanowires embedded in silicone matrix.

THE EFFECTS OF PORCELAIN PRIMERS ON THE BONDING OF COMPOSITE RESINS TO PORCELAIN (도재표면처리제가 복합레진과 도재와의 결합에 미치는 영향)

  • Back Myung-Ju;Park Ju-Mi;Bae Tae-Seong;Park Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.1
    • /
    • pp.55-64
    • /
    • 1992
  • This study investigated the effect of porcelain primer on bonding of coomposite resin to porcelain surface. In order to test the bond strength between porcelain and composite resin, porcelain cylinders were embedded in acrylic resin, and polished with 240grit silicone caqrbide paper. The specimens were divided into twelve groups. All specimens were treated with three porcelain primers and bonded with five composite resins. All test groups were stored in $37^{\circ}C$ distilled water for 48hours. Shear bond strengths were measured with Instron(Model 4201) at a cross-head speed of 1mm/min. The obtained results were as follows : 1. Scotchprime/Silux II group and BISCO Porcelain Primer/Bisfill group showed significant higher bond strengths than Clearfil Porcelain Primer/photo Clearfil Bright group(p<0.05). And there was no significant differences in bond strengths between Scotchprime/Silux II group and BISCO Porcelain Primer/Bisfill group(p>0.05). 2. When composite resins were used with Scotchprime, the bond strengths were decresed Silux II$(16.68{\pm}3.35MPa)$, Bisfil$(16.23{\pm}4.54MPa)$, Poly-Fill$(14.74{\pm}4.08MPa)$, Photo Clearfil Bright$(13.75{\pm}2.89MPa)$ and Pekalux$(14.74{\pm}4.08MPa)$ in order, but there was no statistical significance(p>0.05). 3. When composite resins were used with BISCO Porcelain Primer, the bond strength were decreased Bisfil$(16.17{\pm}1.60MPa)$, Silux II$(12.13{\pm}2.37MPa)$, Poly-Fill$(10.78{\pm}1.99MPa)$, Photo Cleafil Bright $(9.91{\pm}4.59MPa)$ and Pekalux$(7.36{\pm}2.16MPa)$ in order, but there was no statistical significance(p>0.05). 4. Silux II, Photo Clearfil Bright and Poly-Fill used with Scotchprime showed significant higher bond strengths than BISCO Porcelain Primer(p>0.05).

  • PDF

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.

Effect of the Pressure on the Interface and Thermal Conductivity of Polypropylene-SiC Composites (Polypropylene-SiC 복합재료 제조시 성형압력이 계면 및 열전도도에 미치는 영향)

  • Yim, Seung-Won;Lee, Ji-Hoon;Lee, Yong-Gyu;Lee, Sung-Goo;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.10 no.1
    • /
    • pp.30-34
    • /
    • 2009
  • The effect of pressure on the thermal conductivity in two-phase composite system was studied. Thermally conductive polypropylene (PP)/silicon carbide (SiC) composites were prepared by applying various pressures from 0 to 20 MPa. The thermal conductivity of the composite was 1.86 W/mK at 20 MPa, increased by 40% compared to the value of at 0 MPa. It was 9 times higher than that of unfilled polypropylene. It implies the pressure induces the easy path for phonon transport. Also, the experimental values were compared with Maxwell's prediction and Agari's prediction. Agari's prediction gave a better agreement compared to that of Maxwell's prediction due to the consideration of interactions between filler-filler and filler-polymer.

  • PDF