• Title/Summary/Keyword: Silicone Oil

Search Result 209, Processing Time 0.021 seconds

Electrorheology of the Suspension Based on Chitosan Adipate as a New Anhydrous ER Fluid

  • Choi, Ung-Su;Ko, Young-Gun
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.142-145
    • /
    • 2001
  • The electrorheology of the chitosan adipnate suspension in silicone oil was investigated. Chitosan adipnate suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the chitosan adipnate suspension exhibited a linear dependence on the volume fraction of particles and an electric field power of 1.88. The experimental results for the chitosan adipnate suspension correlated with the conduction models and this suspension was found to be an anhydrous ER fluid.

  • PDF

Shear stress analysis of phosphorylated potato starch based electrorheological fluid

  • Hong, Cheng-Hai;Choi, Hyoung-Jin
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.221-225
    • /
    • 2007
  • Electrorheological characteristics of a dispersed system of phosphorylated potato starch particles in silicone oil investigated via a rotational rheometer equipped with a high voltage generator is being reanalysized. Flow curves of these ER fluids both under several applied electric field strengths and with different degrees of phosphate substitution were mainly examined via three different rheological constitutive equations of Bingham model, De Kee-Turcotte model and our previously proposed CCJ model. Among these, the CCJ equation was found to fit the data of phosphorylated potato starch well.

Rheological Consideration of Sub-micron Sized Hollow Polyaniline Malonate Salts Suspension under the Electric Field

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.8 no.1
    • /
    • pp.7-10
    • /
    • 2007
  • The rheological property of hollow PANI malonate suspension in silicone oil was investigated by varying the electric fields and shear rates, respectively. The hollow PANI malonate susepnsion showed a typical electrorheological (ER) response caused by the polarizability of an amide polar group and shear yield stress due to the formation of chains upon application of an electric field. The shear stress for the hollow PANI malonate suspension exhibited an electric field power of 0.90. On the basis of the experimental results, the newly synthesized hollow PANI malonate suspension was found to be an anhydrous ER fluid.

Scaling analysis of electrorheological poly(naphthalene quinone) radical suspensions

  • Min S. Cho;Park, Hyoung J.
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.3_4
    • /
    • pp.151-155
    • /
    • 2000
  • A semiconducting poly(naphthalene quinone) radical (PNQR) was synthesized from Friedel-Craft acylation between naphthalene and phthalic anhydride and used as dispersing particles of a dry-base electrorheological (ER) material in silicone oil. Under an applied electric field (E), the dynamic yield stress (${\tau}_{dyn}$) of this ER fluid, obtained from a steady shear experiment with a controlled shear rate mode, was observed to increase with $E^{1.45}$ Based on this relationship, we propose a universal correlation curve for shear viscosity, which is independent of E using a scaling analysis.

  • PDF

Electrorheology of Chitosan Suspension by Conduction Models (전도성 모델에 의한 키토산 현탁액의 유변학적 특성 연구)

  • 최웅수;안병길;이상순;권오관
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.95-99
    • /
    • 1998
  • The electrorheological (ER) behavior of chitosan suspension in the silicone oil was investigated. Chitosan suspension showed a typical ER response, Bingham flow behavior upon application of an electric field due to the polarizability of the branched amino group of the chitosan particles. The shear yield stress exhibited a linear dependence on the volume fraction of particles and the squared electric field. On the basis of the experimental results, chitosan suspension has been correlated with the conduction models for ER response and found to be an ER fluid.

Electrorheological Properties of Chitin and Chitosan Suspensions

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.8-12
    • /
    • 2005
  • The electrorheological properties pertaining to the electrorheological (ER) bebaviour of chitin and chitosan suspensions in silicone oil were investigated. Chitosan suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field, while chitin suspension acted as a Newtonian fluid. The difference in behaior results from the difference in the conductivity of the chitin and chitosan particles, even though they have a similar chemical structure. The shear stress for the chitosan suspension exhibited a linear dependence on the volume fraction of particles and a 1.18 power of the electric field. The experimental results for the chitosan suspension correlated with the conduction model for ER response.

Electrorheology of Hollow Polyaniline Pimelate Suspension by Conduction Model

  • Choi Ung-Su
    • KSTLE International Journal
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • The electro rheological behavior of the hollow polyaniline pimelate suspension in silicone oil was investigated. Hollow polyaniline pimelate suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the suspension exhibited the dependence with a factor equals to 0.84 power on the electric field. The experimental results for the hollow polyaniline pimelate suspension correlated with the conduction models of Tang et al., and this suspension behaved as an ER fluid.

Synthesis and Electrorheological Effect of the Suspensions Composed of Nano Sized Hollow Polyaniline Derivatives

  • Choi Ung-Su
    • KSTLE International Journal
    • /
    • v.7 no.1
    • /
    • pp.18-21
    • /
    • 2006
  • The electrorheology of hollow PANI derivative suspensions in silicone oil was investigated by varying the electric fields and shear rates, respectively. The hollow PANI derivative susepnsions showed a typical electrorheological (ER) response caused by the polarizability of an amide polar group and shear yield stress due to the formation of chains upon application of an electric field. The shear stress for the hollow PANI succinate suspension exhibited an electric field power of 0.67. On the basis of the experimental results, the newly synthesized hollow PANI derivative suspensions were found to be an anhydrous ER fluid.

Electrorheological Properties of Cellulose Phosphate Ester Suspension by Conduction Models (전도성 모델에 의한 인산에스테르셀룰로오즈 현탁액의 전기유변학적 특성 연구)

  • 최웅수;고영건;박용성;권오관
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.124-129
    • /
    • 2001
  • The electrical and rheological behaviors of the cellulose phosphate ester suspension in the silicone oil were investigated. Cellulose phosphate ester suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the cellulose phosphate ester suspension exhibited a linear dependence on the volume fraction of particles and a square power of the electric field. On the basis of the experimental results, cellulose phosphate ester suspension correlated with the conduction model of Tang et al, and found to be an ER fluid.

Electrorheology of HMDA Coupled Chitosan Succinate Suspension as an Anhydrous ER Fluid

  • Kong, Seong-Wook;Kim, Seung-Wook;Lee, Sang-Soon;Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.7-9
    • /
    • 2008
  • The electrorheology of the HMDA coupled chitosan succinate suspension in silicone oil was investigated. HMDA coupled chitosan succinate suspension showed a typical ER response upon application of an electric field. The shear stress for the HMDA coupled chitosan succinate suspension exhibited an electric field power of 2.0. The experimental results for the HMDA coupled chitosan succinate suspension was found to be an anhydrous ER fluid.