Shear stress analysis of phosphorylated potato starch based electrorheological fluid

  • Hong, Cheng-Hai (Department of Polymer Science and Engineering, Inha University) ;
  • Choi, Hyoung-Jin (Department of Polymer Science and Engineering, Inha University)
  • Published : 2007.12.31

Abstract

Electrorheological characteristics of a dispersed system of phosphorylated potato starch particles in silicone oil investigated via a rotational rheometer equipped with a high voltage generator is being reanalysized. Flow curves of these ER fluids both under several applied electric field strengths and with different degrees of phosphate substitution were mainly examined via three different rheological constitutive equations of Bingham model, De Kee-Turcotte model and our previously proposed CCJ model. Among these, the CCJ equation was found to fit the data of phosphorylated potato starch well.

Keywords

References

  1. Bergthaller, W., W. Witt and H. P. Goldau, 1999, Potato starch technology, Starch-Starke 51, 235-242 https://doi.org/10.1002/(SICI)1521-379X(199907)51:7<235::AID-STAR235>3.0.CO;2-7
  2. Brunn, P. O. and B. Abu-Jdayil, 2004, A phenomenological model of electrorheological fluids, Rheol. Acta 43, 62-67 https://doi.org/10.1007/s00397-003-0320-0
  3. Cates, M.E., T.C.B. McLeish and G. Marrucci, 1993, The rheology of entangled polymers at very high shear rates, Europhys Lett 21, 451-456 https://doi.org/10.1209/0295-5075/21/4/012
  4. Cho, M. S., H. J. Choi and W. S. Ahn, 2004, Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels, Langmuir 20, 202-207 https://doi.org/10.1021/la035051z
  5. Cho, M. S., H. J. Choi and M. S. Jhon, 2005, Shear stress analysis of a semiconducting polymer based electrorheological fluid system, Polymer 46, 11484-11488 https://doi.org/10.1016/j.polymer.2005.10.029
  6. Coleman, B. D., H. Markovitz and W. Noll, 1966, Viscometric flows of non-Newtonian fluids, Springer-Verlag, Berlin, p. 28
  7. Chu, S. H., S. J. Lee and K. H. Ahn, 2000, An experimental study on the squeezing flow of electrorheological suspensions, J. Rheol. 44, 105-120 https://doi.org/10.1122/1.551076
  8. Doi, M, S F. Edwards, 1979, Dynamics of concentrated polymer systems. Part 4. Rheological properties. J. Chem. Soc. Faraday Trans. II 75, 38-54 https://doi.org/10.1039/f29797500038
  9. Doi, M. and S. Edwards, 1986, The Theory of Polymer Dynamics, New York, pp. 268-269
  10. Duan, X. D., H. Chen, Y. J. He and W. L. Luo, 2000, Enhancing yield stress of electrorheological fluids with liquid crystal additive, J. Phys. D-Appl. Phys. 33, 696-699 https://doi.org/10.1088/0022-3727/33/6/317
  11. Eckart, W., 2000, Phenomenological modeling of electrorheological fluids with an extended Casson-model, Continuum Mech. Thermodyn. 12, 341-362 https://doi.org/10.1007/s001610050141
  12. Ekwebelam, C.C. and H. See, 2007, Using oscillatory shear to probe the effects of bidispersity in inverse ferrofluids, Korea-Aust. Rheol. J. 19, 35-42
  13. Fang, F. F., J. H. Kim and H. J. Choi, 2006, Synthesis and electrorheological characterization of polyaniline/barium titanate hybrid suspension, Macromol. Symp. 242, 49-54
  14. Goodwin, J. W., G. M. Markham and B. Vincent, 1997, Studies on model electrorheological fluids, J. Phys. Chem. B 101, 1961-1967 https://doi.org/10.1021/jp962267j
  15. Hao, T., 2001, Electrorheological fluids, Adv. Mater. 13, 1847-1857 https://doi.org/10.1002/1521-4095(200112)13:24<1847::AID-ADMA1847>3.0.CO;2-A
  16. Hong, C. H. and H. J. Choi, 2007, Shear stress and dielectric analysis of H3PO4 doped polyaniline based electrorheological fluid, J. Macromol. Sci. Part B-Phys. 46, 683-692 https://doi.org/10.1080/00222340701388706
  17. Hong, C. H., H. J. Choi and M. S. Jhon, 2006, Comment on 'Preparation and enhanced electrorheological activity of $TiO_2$ doped with chromium ion', Chem. Mat. 18, 2771-2772 https://doi.org/10.1021/cm060558r
  18. Kim, J. H., F. F. Fang, K. H. Lee and H. J. Choi, 2006a, Electrorheology of conducting polyaniline-BaTiO3 composite, Korea-Aust. Rheol. J. 18, 103-107
  19. Kim, J. W., C. A. Kim, H. J. Choi and S. B. Choi, 2006b, Role of surfactant on damping performance of polyaniline based electrorheological suspension, Korea-Aust. Rheol. J. 18, 25-30
  20. Kim, J. W., S. G. Kim, H. J. Choi, M. S. Suh, M. J. Shin and M. S. Jhon, 2001, Synthesis and electrorheological characterization of polyaniline and $Na^+$-montmorillonite clay nanocomposite, Int. J. Mod. Phys. B 15, 657-664 https://doi.org/10.1142/S021797920100512X
  21. Lee, H. J., B. D. Chin, S. M. Yang and O. O. Park, 1998, Surfactant effect on the stability and electrorheological properties of polyaniline particle suspension, J. Colloid Interface Sci. 206, 424-438 https://doi.org/10.1006/jcis.1998.5661
  22. Martin, J. E. and R. A. Anderson, 1996, Chain model of electrorheology, J. Chem. Phys. 104, 4814-4827 https://doi.org/10.1063/1.471176
  23. Moller, P. C. F., J. Mewis and D. Bonn, 2006, Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice, Soft Matter. 2, 274-283 https://doi.org/10.1039/b517840a
  24. Orihara, H., M. Doi and Y. Ishibashi, 1999, Two types of mechanism of electrorheological effect in polymer blends, Int. J. Mod. Phys. B 13, 1949-1955 https://doi.org/10.1142/S0217979299002009
  25. Plocharski, J., H. Drabik, H. Wycislik and T. Ciach, 1997, Electrorheological properties of polyphenylene suspensions, Synth. Met. 88, 139-145 https://doi.org/10.1016/S0379-6779(97)03848-4
  26. See, H., 2000, Constitutive equation for electrorheological fluids based on the chain model, J. Phys. D-Appl. Phys. 33, 1625-1633 https://doi.org/10.1088/0022-3727/33/13/311
  27. See, H., A. Kawai and F. Ikazaki, 2002, Differences in the electrorheological response of a particle suspension under direct current and alternating current electric fields, Colloid Polym. Sci. 280, 24-29 https://doi.org/10.1007/s003960200003
  28. Shin, S. and Y.I. Cho, 2000, A new scanning slit rheometer for electrorheological fluids, Rev. Sci. Instrum. 71, 4665-4669 https://doi.org/10.1063/1.1324739
  29. Sung, J. H. and H. J. Choi, 2004, Electrorheological characteristics of poly(o-ethoxy)aniline nanocomposite, Korea-Aust. Rheol. J. 16, 193-199
  30. Sung, J. H., D. P. Park, B. J. Park, H. J. Choi and M. S. Jhon, 2005, Phosphorylation of potato starch and its electrorheological suspension, Biomacromolecules 6, 2182-2188 https://doi.org/10.1021/bm050146w
  31. Tam, W. Y., G. H. Yi, W. J. Wen, H. R. Ma, M. M. T. Loy and P. Sheng, 1997, New electrorheological fluid: Theory and experiment, Phys. Rev. Lett. 78, 2987-2990 https://doi.org/10.1103/PhysRevLett.78.2987
  32. Vikso-Nielsen, A., A. Blennow, K. Jorgensen, K. H. Kristensen, A. Jensen and B. L. Moller, 2001, Structural, physicochemical, and pasting properties of starches from potato plants with repressed r1-gene, Biomacromolecules 2, 836-843 https://doi.org/10.1021/bm0155165
  33. Walters, K., 1975, Rheometry, Chapman and Hall, London, p. 24
  34. Wang, B. and Z. Xiao, 2003, A general constitutive equation of an ER suspension based on the internal variable theory, Acta. Mech. 163, 99-120
  35. Zhu, H., Y. Kim and D. De Kee, 2005, Non-Newtonian fluids with a yield stress, J. Non-Newton. Fluid. Mech. 129, 177-181 https://doi.org/10.1016/j.jnnfm.2005.06.001