• Title/Summary/Keyword: Silicon-graphite composite

Search Result 37, Processing Time 0.02 seconds

Development of Petroleum-Based Carbon Composite Materials Containing Graphite/silicon Particles and Their Application to Lithium Ion Battery Anodes

  • Noh, Soon-Young;Kim, Young-Hoon;Lee, Chul-Wee;Yoon, Song-Hun
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.116-123
    • /
    • 2011
  • Herein, a novel preparation method of highly homogeneous carbon-silicon composite materials was presented. In contrast to conventional solvent evaporation method, a milled silicon-graphite or its oxidized material were directly reacted with petroleum-derived pitch precursor. After thermal reaction under high pressure, pitch-graphite-silicon composite was prepared. Carbon-graphite-silicon composite were prepared by an air-oxidization and following carbonization. From energy dispersive spectroscopy, it was observed that small Si particles were highly embedded within carbon, which was confirmed by disappearance of Si peaks in Raman spectra. Furthermore, X-ray diffraction and Raman spectra revealed that carbon crystallinity decreased when the strongly oxidized silicon-graphite was added, which was probably due to oxygen-induced cross-linking. From the anode application in lithium ion batteries, carbon-graphite-silicon composite anode displayed a high capacity ($565\;mAh\;g^{-1}$), a good initial efficiency (68%) and an good cyclability (88% retention at 50 cycles), which were attributed to the high dispersion of Si particles within cabon. In case of the strongly oxidized silicongraphite addtion, a decrease of reversible capacity was observed due to its low crystallinity.

Effect of Carbon-coated Silicon/Graphite Composite Anode on the Electrochemical Properties

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Byung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1965-1968
    • /
    • 2008
  • The effects of carbon-coated silicon/graphite (Si/Gr.) composite anode on the electrochemical properties were investigated. The nanosized silicon particle shows a good cycling performance with a reasonable value of the first reversible capacity as compared with microsized silicon particle. The carbon-coated silicon/graphite composite powders have been prepared by pyrolysis method under argon/10 wt% propylene gas flow at $700{^{\circ}C}$ for 7 h. Transmission electron microscopy (TEM) analysis indicates that the carbon layer thickness of 5 nm was coated uniformly onto the surface silicon powder. It is confirmed that the insertion of lithium ions change the crystalline silicon phase into the amorphous phase by X-ray diffraction (XRD) analysis. The carbon-coated composite silicon/graphite anode shows excellent cycling performance with a reversible value of 700 mAh/g. The superior electrochemical characteristics are attributed to the enhanced electronic conductivity and low volume change of silicon powder during cycling by carbon coating.

Electrochemical Performance of Pitch coated Nano Silicon Sheets / Graphite Composite as Anode Material (피치로 코팅된 Nano Silicon Sheets/Graphite 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.487-492
    • /
    • 2021
  • In this study, the electrochemical properties of pitch coated silicon sheets/graphite anode materials were investigated. Using NaCl as a template, silicon sheets were prepared through the stöber method and the magnesiothermic reduction methode. In order to synthesize the anode composite, the silicon sheets and graphite were combined with SDBS. The pitch coated silicon sheets/graphite was synthesized using THF as a solvent for the anode material composite. The physical properties of the prepared anode composites were analysed by XRD, SEM, EDS and TGA. The electrochemical performances of the prepared anode composites were performed by the current charge/discharge, rate performance, cyclic voltammetry and EIS tests in the electrolyte LiPF6 dissolved solvents (EC:DMC:EMC=1:1:1 vol%). As the silicon composition of silicon sheets/graphite composite material increased, the discharge capacity also increased, but the cycle stability tended to decrease. The anode material of pitch coated silicon sheets/graphite composite (silicon sheets:graphite=3:7 weight ratio) showed the initial discharge capacity of 1228.8 mAh/g and the capacity retention ratio of 77% after 50 cycles. From these results, it was found that the cycle stability of pitch coated silicon sheets/graphite was improved.

Comparative Study on Performances of Composite Anodes of SiO, Si and Graphite for Lithium Rechargeable Batteries

  • Doh, Chil-Hoon;Veluchamy, Angathevar;Lee, Duck-Jun;Lee, Jung-Hoon;Jin, Bong-Soo;Moon, Seong-In;Park, Cheol-Wan;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1257-1261
    • /
    • 2010
  • The electrochemical performances of anode composites comprising elemental silicon (Si), silicon monoxide (SiO), and graphite (C) were investigated. The composite devoid of elemental silicon (SiO:C = 1:1) and its carbon coated composite showed reduced capacity degradation with measured values of 606 and 584 mAh/g at the fiftieth cycle. The capacity retention nature when the composites were cycled followed the order of Si:SiO:C = 3:1:4 < Si:SiO:C = 2:2:4 < SiO:C = 1:1 < SiO:C = 1:1 (carbon coated). A comparison of the capacity retention properties for the composites in terms of the silicon content showed that a reduced silicon content increased the stability of the composite electrodes. Even though the carbon-coated composite delivered low capacity during cycling compared to the other composites, its low capacity degradation made the anode a better choice for lithium ion batteries.

Electrochemical Performance of Graphite/Silicon/Pitch Anode Composites Bonded with Graphite Surface PVP and Silica Amine Function Group (흑연 표면의 PVP와 실리카의 아민 작용기로 결합된 흑연/실리콘/피치 음극 복합소재의 전기화학적 성능)

  • Lee, Su Hyeon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.118-123
    • /
    • 2019
  • In this study, the electrochemical characteristics of Graphite/Silicon/Pitch anode composites were analyzed to improve the low theoretical capacity of graphite as a lithium ion battery. The Graphite/Silica composites were synthesized by bonding silica onto polyvinylpyrrolidone coated graphite. The surface of used silica was treated with (3-Aminopropyl)triethoxysilane(APTES). Graphite/Silicon/Pitch composites were prepared by carbonization of petroleum pitch, the fabrication processes including the magnesiothermic reduction of nano silica to obtain silicon and varying the mass ratio of silica. The Graphite/Silicon/Pitch composites were analysed by XRD, SEM and XRD. Also the electrochemical performances of Graphite/Silicon/Pitch composite as the anode of lithium ion battery were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance tests in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC:DMC:EMC=1:1:1 vol%). The Graphite/Silicon/Pitch anode composite (silica 28.5 in weight) has better capacity (537 mAh/g). The cycle performance has an excellent capacity retention to 30th cycle of 95% and the retention rate capability of 98% in 0.1 C/0.2 C.

Silicon Carbide Coating on Graphite and Isotropic C/C Composite by Chemical Vapour Reaction

  • Manocha, L.M.;Patel, Bharat;Manocha, S.
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.91-94
    • /
    • 2007
  • The application of Carbon and graphite based materials in unprotected environment is limited to a temperature of $450^{\circ}C$ or so because of their susceptibility to oxidation at this temperature and higher. To over come these obstacles a low cost chemical vapour reaction process (CVR) was developed to give crystalline and high purity SiC coating on graphite and isotropic C/C composite. CVR is most effective carbothermal reduction method for conversation of a few micron of carbon layer to SiC. In the CVR method, a sic conversation layer is formed by reaction between carbon and gaseous reagent silicon monoxide at high temperature. Characterization of SiC coating was carried out using SEM. The other properties studied were hardness density and conversion efficiency.

Electrochemical Characteristics of Silicon-carbon Composite Anodes for Lithium Rechargeable Batteries

  • Lee, Jaeho;Won, Sora;Shim, Joongpyo;Park, Gyungse;Sun, Ho-Jung;Lee, Hong-Ki
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.193-197
    • /
    • 2014
  • Si-carbon composites as anode materials for lithium rechargeable batteries were prepared simply by mixing Si nanoparticles with carbon black and/or graphite through a solution process. Si nanoparticles were well dispersed and deposited on the surface of the carbon in a tetrahydrofuran solution. Si-carbon composites showed more than 700 mAh/g of initial capacity under less than 20% loading of Si nanoparticle in the composites. While the electrode with only Si nanoparticles showed fast capacity fading during continuous cycling, Si-carbon composite electrodes showed higher capacities. The cycle performances of Si nanoparticles in composites containing graphite were improved due to the role of the graphite as a matrix.

Electrochemical Characteristics of Graphite/Silicon/Pitch Anode Composites for Lithium Ion Batteries using Silica-Coated Graphite (실리카로 코팅된 흑연을 이용한 리튬 이차전지용 흑연/실리콘/피치 복합소재의 전기화학적 특성)

  • Lee, Su Hyeon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.142-149
    • /
    • 2020
  • In this study, the electrochemical performance of Graphite/Silicon/Pitch composites as anode material was investigated to improve the low theoretical capacity of artificial graphite. Spherical artificial graphite surface was coated with polyvinylpyrrolidone (PVP) amphiphiles material to synthesize Graphite/Silica material by silica islands growth. The Graphite/Silicon/Pitch composites were prepared by petroleum pitch coating and magnesiothermic reduction. The Graphite/Silicon/Pitch composite electrodes manufactured using poly(vinylidene fluoride) (PVDF), carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) binders. The coin type half cell was assembled using various electrolytes and additives. The Graphite/Silicon/Pitch composites were analysed by X-ray diffraction (XRD), scanning electron microscope (SEM) and a thermogravimetric analyzer (TGA). The electrochemical characteristics of Graphite/Silicon/Pitch composite were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance spectroscopy. The Graphite/Silicon/Pitch composites showed high cycle stability at a graphite/silica/pitch ratio (1:4:8 wt%). When the electrode is prepared using PAA binder, the high capacity and stability is obtained. The coin type half cell assembled using EC: DMC: EMC electrolyte showed high initial capacity (719 mAh/g) and excellent cycle stability. The rate performance has an capacity retention (77%) at 2 C/0.1 C and an capacity recovery (88%) at 0.1 C / 0.1 C when the vinylene carbonate (VC) was added.

SiC composite formed by Si vapor diffusion into porous graphite (다공질 그래파이트내부로 Si 증발입자 확산에 의해 형성되는 SiC 복합재료)

  • Park, Jang-Sick
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.167-167
    • /
    • 2015
  • SiC thin films made by vapor silicon infiltration into porous graphite can be obtained for shorter time than liquid silicon. Si diffusion coefficient is estimated by comparing experiment results with quadratic equation obtained by Fick's second law.

  • PDF