Silicon wafer for making semiconductor devices and solar cell is used in the semiconductor and solar industry, respectively. Silicon wafer is produced by cutting with silicon ingot and sludge contains silicon occurs from cutting process. Generation of silicon sludge is increasing on developing all industry sectors which have need of semiconductor device. These days it has been widely studied for the recycling technologies of the silicon sludge from view points of economy and efficiency. In this paper, patents and paper on the recycling technologies of the silicon sludge were analyzed. The range of search was limited in the open patents of USA (US), European Union (EU), Japan (JP), Korea (KR) and SCI journals from 1982 to 2011. Patents and journals were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journals was analyzed by the years, countries, companies, and technologies.
Silicon wafer is used in making semiconductor device of various forms in the semiconductor industry. Silicon wafer is produced by cutting silicon ingot and sludge containing silicon results from cutting process. The amount of silicon sludge is increasing owing to the usage of semiconductor device in many industry sectors. These days the recycling technologies of the waste silicon sludge has been widely studied from view point of economy and efficiency. In this study, patents on the recycling technologies of the waste silicon sludge were analyzed. The range of search was limited in the open patents of USA, European Union, Japan, and Korea up to september, 2007. Patents were collected using key-words and filtered by filtering criteria. The trend of the patents was analyzed by the years, countries, companies, and technologies.
Waste SiC powders obtained from silicon wafer sludge have very low density and a narrow particle size distribution of $10-20{\mu}m$. A scarce yield of C and Si is expected when SiC powders are incorporated into the Fe melt without briquetting. Here, the briquetting variables of the SiC powders are studied as a function of the sintering temperature, pressure, and type and contents of the binders to improve the yield. It is experimentally confirmed that Si and C from the sintered briquette can be incorporated effectively into the Fe melt when the waste SiC powders milled for 30 min with 20 wt.% Fe binder are sintered at $1100^{\circ}C$ upon compaction using a pressure of 250 MPa. XRF-WDS analysis shows that an yield of about 90% is obtained when the SiC briquette is kept in the Fe melt at $1650^{\circ}C$ for more than 1 h.
This study presents the carburization process for recycling sludge, which was formed during silicon wafer machining. The sludge used in the carburization process is a mixture of silicon and silicon carbide (SiC) with iron as an impurity, which originates from the machine. Additionally, the sludge contains cutting oil, a fluid with high viscosity. Therefore, the sludge was dried before carburization to remove organic matter. The dried sludge was washed by acid cleaning to remove the iron impurity and subsequently carburized by heat treatment under vacuum to form the SiC powder. The ratio of silicon to SiC in the sludge was varied depending on the sources and thus carbon content was adjusted by the ratio. With increasing SiC content, the carbon content required for SiC formation increased. It was demonstrated that substoichiometric SiCx (x<1) was easily formed when the carbon content was insufficient. Therefore, excess carbon is required to obtain a pure SiC phase. Moreover, size reduction by high-energy milling had a beneficial effect on the suppression of SiCx, forming the pure SiC phase.
Journal of Korea Society of Industrial Information Systems
/
v.17
no.1
/
pp.1-9
/
2012
This paper explained about the sludge recycling system which retrieved the silicon and abrasive from solar cell wafer slicing. The basic process of the recycling system was multiple centrifuge and secondary processes of ultra sonic agitation, addition of alcohol-water solution and heating sludge was added for raising separation efficiency. The recycling rate was about 96% and 94% for 2N, 4N silicon respectively. The SiC abrasive recycling rate was about 80%. To retrieve the high purity of 4N silicon, the heat process in vacuum furnace was added to remove remaining impurity components.
In this study, it was to develop a chemical method that can recycle the cutting oil which accounts for about 25% of the cost of the process among containing materials of silicon waste sludge generated in the process for producing a solar cell wafer. The 7 types of reagents have been used, including acetone, HCl, NaOH, KOH, $Na_2CO_3$, HF, $CH_2Cl_2$, etc. for this experiment. And It was carried out at a speed of 3000 rpm for 60 minutes centrifugation after performing a reaction with a waste sludge at various concentrations. As a result, the best reagents and conditions for separating the solid such as a silicon powder and a metal powder and liquid cutting oil were identified as 0.3 N NaOH. It is found to be pH 6.05 in a post-processing recycled cutting oil with 0.3 N NaOH after reaction of waste sludge and 0.1 N HCl which is effective to remove metal powder in order to adjust the pH to suit the properties of the weak acid is a commercially available cutting oil and it showed excellent turbidity than when applied to sludge with 0.3 N NaOH alone. The results of FT-IR analysis which can compare the properties of the commercially available cutting oil shows it has a possibility of recycling oil. The cutting oil recovery rate obtained through the experiment was found to be 86.9%.
Borim Shim;Eunha Kim;Hyeonmin Yim;Won Jin Kim;Woo-Byoung Kim
Korean Journal of Materials Research
/
v.34
no.7
/
pp.370-376
/
2024
In this study, we report significant improvements in lithium-ion battery anodes cost and performance, by fabricating nano porous silicon (Si) particles from Si wafer sludge using the metal-assisted chemical etching (MACE) process. To solve the problem of volume expansion of Si during alloying/de-alloying with lithium ions, a layer was formed through nitric acid treatment, and Ag particles were removed at the same time. This layer acts as a core-shell structure that suppresses Si volume expansion. Additionally, the specific surface area of Si increased by controlling the etching time, which corresponds to the volume expansion of Si, showing a synergistic effect with the core-shell. This development not only contributes to the development of high-capacity anode materials, but also highlights the possibility of reducing manufacturing costs by utilizing waste Si wafer sludge. In addition, this method enhances the capacity retention rate of lithium-ion batteries by up to 38 %, marking a significant step forward in performance improvements.
As a recovery of elemental silicon from the sludge of Si wafer process, a process of mechanical separation-chlorine roasting-electrolysis has been suggested. The silicon sludge consisted of Si, SiC, machine oil, and metallic impurities. The oil and metal impurities was removed by mechanical separation. The Si-SiC mixture was converted to silicon chloride by chlorine roasting at $1000^{\circ}C$ for 1 hr and the silicon chloride was dissolved into an ionic liquid of $[Bmpy]Tf_2N$ as an electrolyte. Cyclic voltammetry results showed an wide voltage window of pure $[Bmpy]Tf_2N$ and a reduction peak of elemental Si from $[Bmpy]Tf_2N$ dissolved $SiCl_4$ on Au electrode, respectively. The silicon deposits could be prepared on the Au electrode by the potentiostatic electrolysis of -1.9 V vs. Pt-QRE. The elemental silicon uniformly electrodeposited was confirmed by various analytical techniques including XRD, FE-SEM with EDS, and XPS. Any impurity was not detected except trace oxygen contaminated during handling for analysis.
In the present study, the possibility of recovering and recycling the silicon carbide(SiC) from a silicon sludge by removing Fe and Si impurities was investigated. Si and SiC were separated from the silicon sludge using centrifugation. The separated SiC concentrate consisted of Fe, Si and SiC, in which Fe and Si were removed to recover the pure SiC. Leaching with acid/alkali solution was compared with the vapor-phase chlorination. The Fe concentration removed in the SiC was 49 ppm, and it was separated by leaching with 1 M HCl solution at $80^{\circ}C$ for 1 h. The Si concentration removed in the SiC was 860 ppm, and it was separated by leaching with 1M NaOH solution at $50^{\circ}C$ for 1 h. The SiC concentrate was chlorinated in a tubular reactor, 2.4 cm in diameter and 32 cm in length. The boat filled with SiC concentrate was located at the midpoint of the alumina tube, then, the chlorine and nitrogen gas mixture was introduced. The Fe and Si concentration removed in the SiC were 48 ppm and 405 ppm, respectively, at $500^{\circ}C$ reactor temperature, 4 h reaction time, 300 cc/min gas flow rate, and 10% $Cl_2$ gas mole fraction.
As a recycling of Si sludge from Si wafer process, a Si-SiC-CuO-C composite material was synthesized and investigated as an anode material for lithium batteries. The Si sludge consisted of Si, SiC, machine oil, and metallic impurities. The oil and metal impurities was removed by organic washing, magnetic separation, and acid washing. The Si-SiC-CuO-C composite from the recovered Si-SiC mixture was prepared by high-energy mechanical milling. According to the electrochemical tests such as charge-discharge capacity and cycling behavior, it showed the improved cycle performance. The SiC and CuO-related phases were presumed to restrain the volume expansion of the anode and Fe, however, should be removed below 10 ppm prior to synthesis of the composite because it caused the capacity loss of the active material itself.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.