DOI QR코드

DOI QR Code

Removal of Fe, Si from Silicon Carbide Sludge Generated in the Silicon Wafer Cutting Process

실리콘 웨이퍼 절단공정(切斷工程)에서 발생(發生)하는 실리콘 카바이드 슬러지로부터 철(鐵), 실리콘 제거(除去)

  • Park, Hoey Kyung (Department Chemical Engineering, Kongju National University) ;
  • Go, Bong Hwan (Department Chemical Engineering, Kongju National University) ;
  • Park, Kyun Young (Department Chemical Engineering, Kongju National University) ;
  • Kang, Tae Won (Department Chemical Engineering, Kongju National University) ;
  • Jang, Hee Dong (Rare Metals Research Center, Korea Institute of Geoscience & Mineral Resources (KIGAM))
  • 박회경 (공주대학교 화학공학부) ;
  • 고봉환 (공주대학교 화학공학부) ;
  • 박균영 (공주대학교 화학공학부) ;
  • 강태원 (공주대학교 화학공학부) ;
  • 장희동 (한국지질자원연구원 희유자원연구센터)
  • Received : 2012.10.02
  • Accepted : 2013.01.11
  • Published : 2013.04.30

Abstract

In the present study, the possibility of recovering and recycling the silicon carbide(SiC) from a silicon sludge by removing Fe and Si impurities was investigated. Si and SiC were separated from the silicon sludge using centrifugation. The separated SiC concentrate consisted of Fe, Si and SiC, in which Fe and Si were removed to recover the pure SiC. Leaching with acid/alkali solution was compared with the vapor-phase chlorination. The Fe concentration removed in the SiC was 49 ppm, and it was separated by leaching with 1 M HCl solution at $80^{\circ}C$ for 1 h. The Si concentration removed in the SiC was 860 ppm, and it was separated by leaching with 1M NaOH solution at $50^{\circ}C$ for 1 h. The SiC concentrate was chlorinated in a tubular reactor, 2.4 cm in diameter and 32 cm in length. The boat filled with SiC concentrate was located at the midpoint of the alumina tube, then, the chlorine and nitrogen gas mixture was introduced. The Fe and Si concentration removed in the SiC were 48 ppm and 405 ppm, respectively, at $500^{\circ}C$ reactor temperature, 4 h reaction time, 300 cc/min gas flow rate, and 10% $Cl_2$ gas mole fraction.

실리콘 슬러지로부터 원심분리에 의해 1 단계로 실리콘(Si)을 분리 한 후 남게 되는 실리콘 카바이드(SiC) 농축물 내에 포함되어 있는 철과 잔존하는 실리콘을 추가적으로 제거함으로써 실리콘 카바이드의 순도를 향상 시킬 수 있는 가능성을 탐색해 보았다. 실리콘 카바이드 농축물을 대상으로 하여 염산(HCl)/수산화나트륨(NaOH)에 의한 액상 침출법과 염소 가스에 의한 기상 염소화법을 비교해 보았다. 실리콘 카바이드 농축물을 1 M 염산 수용액에서 $80^{\circ}C$에서 1 시간 동안 침출시킴으로써 회수된 실리콘 카바이드에 잔류하는 철의 농도를 49 ppm 까지 제거하였으며, 1 M 수산화나트륨 수용액에서 $50^{\circ}C$에서 1 시간 동안 침출시킴으로써 실리콘 카바이드 내 잔류하는 실리콘의 농도를 860 ppm 까지 제거하였다. 기상 염소화 반응은 직경 2.4 cm, 길이 32 cm의 전기로에 의해 가열되는 알루미나 튜브의 중심에 실리콘 카바이드 농축물을 위치시키고, 질소와 염소의 혼합가스를 흘려보내는 방식에 의해 이루어졌는데, 반응온도 $500^{\circ}C$, 반응시간 4 시간, 가스유량 300 cc/min, 염소 몰분율 10%의 조건 하에서 실리콘 카바이드 내 철과 실리콘의 잔류 농도를 48 ppm과 405 ppm 까지 낮출 수 있었다.

Keywords

Acknowledgement

Supported by : 환경부

References

  1. Kil, D. S., Jang, H. D. Kang, K. S. and Han, H. J., 2008: Analysis of Patents on the Recycling Technologies for Waste Silicon Sludge, J. Korea Inst. of Resources Recycling 17(4), pp. 66-76.
  2. Wang, T. Y., Lin, Y. C., Tai, C. Y., Fei, C. C., Tseng, M. Y. and Lan, C. W., 2009: Recovery of Silicon from Kerf Loss Slurry Waste for Photovoltaic Applications, Prog. Photovol: Res. Appl. 17, pp. 155-163. https://doi.org/10.1002/pip.863
  3. Lin, Y. C., Wang, T. Y., Lan, C. W. and Tai, C. Y., 2010: Recovery of Silicon Powder from Kerf Loss Slurry by Centrifugation, Powder Technology 200, pp. 216-223. https://doi.org/10.1016/j.powtec.2010.02.028
  4. Kim, J. Y., Kim, U. S., Hwang, K. T., Cho, W. S. and Kim, K. J., 2011: Recovery of Metallurgical Silicon from Slurry Waste, J. Korea Ceram. Soc. 48, pp. 189-194. https://doi.org/10.4191/KCERS.2011.48.2.189
  5. Morita, K., Miki, T., 2003: Thermodynamics of Solar-Grade-Silicon Refining, Intermetallics. 11, pp. 1111-1117. https://doi.org/10.1016/S0966-9795(03)00148-1
  6. Wang, T. Y., Lin, Y. C., Tai, C. Y., Sivakumar, R., Rai, D. K., Lan, C. W., 2008: A Novel Approach for Recycling of Kerf Loss from Cutting Slurry Waste for Solar Cell Applications, J. Cryst. Growth. 310, pp. 3403-3406. https://doi.org/10.1016/j.jcrysgro.2008.04.031
  7. Eum, J. H., Chang, H. S., Kim, H. T. and Choi, K., 2008: Silicon Purification through Acid Leaching and Unidirectional Solidification, J. Korea Cryst. Tech. 18(6), pp. 232-236.
  8. Carlo, Z., Guide, F. and Elio, P., 2004: Method for Treating an Exhausted Glycol-Based Slurry, US7223344.
  9. Kajimoto, K., Oba, T. and Hirakawa, H., 2007: Method for Producing Halosilane and Method for Purifying Solid Fraction, US0231236.
  10. Min, H. and Yury, G., 2011: Carbide-Derived Carbons-From Porous Networks to Nanotubes and Graphene", Adv. Funct. Mater. 21, pp. 810-833. https://doi.org/10.1002/adfm.201002094