• 제목/요약/키워드: Silicon vapor

검색결과 670건 처리시간 0.027초

태양전지 응용을 위한 플라즈마 열선 화학기상증착법으로 성장한 미세결정 실리콘에 관한 연구 (A Study on the Plasma Enhanced Hot-wire CVD Grown Miorocrystalline Silicon Films for Photovoltaic Device Applications)

  • 유진수;임동건;고재경;박중현;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.632-635
    • /
    • 2001
  • Microcrystalline Si films have been deposited by using five W-wire filaments of 0.5 mm diameter for hot-wire chemical vapor deposition (HWCVD). We compared the HWCVD grown films with the film exposed to transformer couple plasma system for the modification of seed layer. W-wire filament temperature was maintained below 1600$^{\circ}C$ to avoid metal contamination by thermal evaporation at the filament. Deposition conditions were varied with H$_2$dilution ratio, with and without plasma treatment. From the Raman spectra analysis, we observed that the film crystallization was strongly influenced by the H$_2$dilution ratio and weakly depended on the distance between the wire and a substrate. We were able to achieve the crystalline volume fraction of about 70% with an SiH$_4$/H$_2$ratio of 1.3%, a wire temperature of 1514$^{\circ}C$, a substrate separation distance of 4cm, and a chamber pressure of 38 mTorr. We investigated the influence of ${\mu}$c-Si film properties by using a plasma treatment. This article also deals with the influence of the H$_2$dilution ratio in crystallization modification.

  • PDF

입방형 탄화규소 박막의 적층 성장 (Single Source Chemical Vapor Deposition of Epitaxial Cubic SiC Films on Si)

  • 이경원;유규상;구수진;김창균;고원용;조용국;김윤수
    • 한국진공학회지
    • /
    • 제5권2호
    • /
    • pp.133-138
    • /
    • 1996
  • 단일 선구물질인 1, 3 -디실라부탄을 사용하여 고진공 하의 온도 영역 900-$1000^{\circ}C$에서 탄화규소 환충층이 형성된 Si(001) 기질 위에 입방형 탄화규소 박막을 적층 성장시켰다. 얻어진 탄화규소 박막의 화학량론적 비, 양질의 결정성 및 표면형태의 특성을 반사 고에너지 전자 회절, Xtjs 광전자 분광법, X선 회절, Xtjs 극접도, 주사 전자 현미경 및 투과 전자 현미경으로 확인하였다. 이들 결과로부터 단일 선구물질인 1, 3-디실라부탄이 입방구조를 가지는 탄화규소 박막의 적층 성장에 적절한 물질임을 밝혔다.

  • PDF

내열금속 기판위에 다이아몬드 박막의 증착과 특성분석 (Vapor Phase Deposition and Characterization of Diamond Thin Films on Refractory Metals)

  • 홍성현;형준호
    • 한국결정학회지
    • /
    • 제5권1호
    • /
    • pp.39-50
    • /
    • 1994
  • Hot Tungsten Filament법에 의해 실리콘(Si), 몰리브데늄(Mo), 타이타늄(Ti), 텅스텐(W) 기판 위에 다이아몬드 박막을 증착시시키고 SEM, X선 회절분석 및 Raman spectroscopy로 분석하였다. 증착시간에 따른 증착실험의 결과로부터 내열금속위에 증착한 다이아몬드박막의 경우에는 먼저 탄화물 층이 형성되고, 그 이후에 다이아몬드가 핵형성되어 성장함을 알 수 있었다. 내열금속에 증착한 다이아몬드 박막은 5기판 위에 증착한 것과 비교할 때, 핵이 많이 형성되었고 facet이 잘 발달된 입자가 적었다. 5기판 뿐만 아니라 내열금속 기판 위에 다이아몬드막을 증착시킬 경우, 다이아몬드의 Raman 피크는 천연 다이아몬드에 비해 높은 주파수쪽으로 이동되었다. 이와같은 Raman 피크의 이동은 다이아몬드와 기판 사이의 열충격보다는 완충층의 역활을 하는 탄화물과 다이아몬드 사이의 열충격을 고려할 때 효과적으로 설명이 가능하였다. 생성된 탄화물의 형태와 다이아몬드 사이에 열충격이 가장 큰 Mo기판의 경우, 다이아몬드 Rarirm 피크의 이동이 가장 크게 나타났으며 Ti, W, Si기판의 순서로 이동이 적게 관찰되었다.

  • PDF

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

화학기상증착법으로 성장시킨 4H-SiC 동종박막의 성장 특성 (Growth characteristics of 4H-SiC homoepitaxial layers grown by thermal CVD)

  • Jang, Seong-Joo;Jeong, Moon-Taeg;Seol, Woon-Hag;Park, Ju-Hoon
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1999년도 PROCEEDINGS OF 99 INTERNATIONAL CONFERENCE OF THE KACG AND 6TH KOREA·JAPAN EMG SYMPOSIUM (ELECTRONIC MATERIALS GROWTH SYMPOSIUM), HANYANG UNIVERSITY, SEOUL, 06월 09일 JUNE 1999
    • /
    • pp.271-284
    • /
    • 1999
  • As a semiconductor material for electronic devices operated under extreme environmental conditions, silicon carbides (SiCs) have been intensively studied because of their excellent electrical, thermal and other physical properties. The growth characteristics of single-crystalline 4H-SiC homoepitaxial layers grown by a thermal chemical vapor deposition (CVD) were investigated. Especially, the successful growth condition of 4H-SiC homoepitaxial layers using a SiC-uncoated graphite susceptor that utilized Mo-plates was obtained. The CVD growth was performed in an RF-induction heated atmospheric pressure chamber and carried out using off-oriented substrates prepared by a modified Lely method. In order to investigate the crystallinity of grown epilayers, Nomarski optical microscopy, Raman spectroscopy, photoluminescence(PL), scanning electron microscopy (SEM) and other techniques were utilized. The best quality of 4H-SiC homoepitaxial layers was observed in conditions of growth temperature 1500$^{\circ}C$ and C/Si flow ratio 2.0 of C3H3 0.2sccm & SiH4 0.3sccm. The growth rate of epilayers was about 1.0$\mu\textrm{m}$/h in the above growth condition.

  • PDF

RF plasma-enhancd CVD 법에 의해 증착된 a-$Si_xC_{1x}:H$ 의 표면분석 (Surface analysis of a-$Si_xC_{1x}:H$ deposited by RF plasma-enhanced CVD)

  • Kim, Yong-Tak;Yang, Woo-Seok;Lee, Hyun;Byungyou Hong;Yoon, Dae-Ho
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1999년도 PROCEEDINGS OF 99 INTERNATIONAL CONFERENCE OF THE KACG AND 6TH KOREA·JAPAN EMG SYMPOSIUM (ELECTRONIC MATERIALS GROWTH SYMPOSIUM), HANYANG UNIVERSITY, SEOUL, 06월 09일 JUNE 1999
    • /
    • pp.285-303
    • /
    • 1999
  • Thin films of hydrogenated amorphous silicon carbide compounds (a-SixC1x:H) of different compositions were deposited on Si substrate by RF plasma-enhanced chemical vapor deposition (PECVD). Experiments were carried out using silane(SiH4) and methane(CH4) as the gas precursors at 1 Torr and at low substrate temperature (25$0^{\circ}C$). The gas flow rate was changed with every other parameters (pressure, temperature, RF power) fixed. The substrate was Si(100) wafer and all of the films obtained were amorphous. The bonding structure of a-SixC1x:H films deposited was investigated by X-ray photoelectron spectroscopy (XPS) for the film compositions. In addition, the surface morphology of films was investigated by atomic force microscopy (AFM).

  • PDF

고온 전자빔 증착에 의한 Ethylene Terephthalate상의 SiOx 박막의 특성 평가 (Characteristics of Defects in SiOx Thin films on Ethylene Terephthalate by High-temperature E-beam Deposition)

  • 한진우;김영환;김종환;서대식;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제19권1호
    • /
    • pp.71-74
    • /
    • 2006
  • In this paper, we investigated the characterization of silicon oxide(SiOx) thin film on Ethylene Terephthalate(PET) substrates by e-beam deposition for transparent barrier application. The temperature of chamber increases from $30^{\circ}C$ to $110^{\circ}C$, the roughness increase while the Water vapor transmission rate (WVTR) decreases. Under these conditions, the WVTR for PET can be reduced from a level of $0.57 g/m^2/day$ (bare subtrate) to $0.05 g/m^2/day$ after application of a 200-nm-thick $SiO_2$ coating at 110 C. A more efficient way to improve permeation of PET was carried out by using a double side coating of a 5-${\mu}m$-thick parylene film. It was found that the WVTR can be reduced to a level of $-0.2 g/m^2/day$. The double side parylene coating on PET could contribute to the lower stress of oxide film, which greatly improves the WVTR data. These results indicates that the $SiO_2$ /Parylene/PET barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

Si(100) 기판 위에 성장돈 3C-SiC 박막의 물리적 특성 (Physical Characteristics of 3C-SiC Thin-films Grown on Si(100) Wafer)

  • 정귀상;정연식
    • 한국전기전자재료학회논문지
    • /
    • 제15권11호
    • /
    • pp.953-957
    • /
    • 2002
  • Single crystal 3C-SiC (cubic silicon carbide) thin-films were deposited on Si(100) wafer up to the thickness of 4.3 ${\mu}{\textrm}{m}$ by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane; {CH$_{3}$$_{6}$ Si$_{2}$) at 135$0^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC film was 4.3 ${\mu}{\textrm}{m}$/hr. The 3C-SiC epitaxial film grown on Si(100) wafer was characterized by XRD (X-ray diffraction), AFM (atomic force microscopy), RHEED (reflection high energy electron diffraction), XPS (X-ray photoelecron spectroscopy), and Raman scattering, respectively. Two distinct phonon modes of TO (transverse optical) near 796 $cm^{-1}$ / and LO (longitudinal optical) near 974$\pm$1 $cm^{-1}$ / of 3C-SiC were observed by Raman scattering measurement. The heteroepitaxially grown film was identified as the single crystal 3C-SiC phase by XRD spectra (2$\theta$=41.5。).).

PECVD법에 의한 3C-SiC막 증착(I): 증착변수에 따른 SiC 증착거동 (Deposition of 3C-SiC Films by Plasma-enhanced Chemical Vapor Deposition (I): Deposition Behaviors of SiC with Deposition Parameters)

  • 김광호;서지윤;윤석영
    • 한국세라믹학회지
    • /
    • 제38권6호
    • /
    • pp.531-536
    • /
    • 2001
  • SiCl$_4$/CH$_4$/H$_2$계를 사용한 플라즈마 화학증착법(PECVD)으로 실리콘(100) 기판 위에 3C-SiC막을 117$0^{\circ}C$~1335$^{\circ}C$의 온도범위에서 증착하였다. 증착온도, 유입가스비, R$_{x}$ [=CH$_4$/(CH$_4$+H$_2$)], 그리고 r.f. power를 변화시켜 증착막의 결정성에 대해 검토하였다. Thermal CVD에 비해 PECVD법은 박막의 증착속도를 향상시켰다. 증착된 3C-SiC은 (111) 면으로 최대의 우선배향성을 지님을 알 수 있었다. 실리콘 기판 위의 3C-SiC막의 결정성은 R$_{x}$값에 의존하였으며, R$_{x}$가 감소할수록 결정성이 더욱 향상되었다. Free Si가 3C-SiC막과 함께 증착되었으나, 증착온도와 r.f power가 증가함에 따라 free Si의 함량은 감소하였다. 증착온도 127$0^{\circ}C$, 유입가스비 R$_{x}$=0.04, r.f. power가 60W에서 비교적 결정성을 가진 3C-SiC막을 얻을 수 있었다.

  • PDF

PE-CVD를 이용한 45nm이하급 저유전물질 DEMS(Diethoxymethylsiliane) 박막증착연구 (Thin Films Deposition Study Using Plasma Enhanced CVD with Low Dielectric Materials DEMS(diethoxymethlysiliane) below 45nm)

  • 강민구;김대희;김영철;서화일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.148-148
    • /
    • 2008
  • Low-k dielectric materials are an alternative plan to improve the signal propagation delay, crosstalk, dynamic power consumption due to resistance and parasitic capacitance generated the decrease of device size. Now, various materials is studied for the next generation. Diethoxymethlysiliane (DEMS) precursor using this study has two ethoxy groups along with one methyl group attached to the silicon atoms. SiCOH thin films were deposited on p-type Si(100) substrate by Plasma Enhanced Chemical Vapor Deposition (PECVD) using DEMS. In this study, we studied the effect of oxygen($O_2$) flow rate for DEMS to characteristics of thin films. The characteristics of thin films deposited using DEMS and $O_2$ evaluated through refractive index, dielectric constant(k), surface roughness, I-V(MIM:Al / SiCOH / Ag), C-V(MIM), deposition rate.

  • PDF