• Title/Summary/Keyword: Silicon etching

Search Result 740, Processing Time 0.021 seconds

Application of an Interferometric Biosensor Chip to Biomonitoring an Endocrine Disruptor

  • Kim, Byung-Woo;Lim, Sung-Hyuk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.118-126
    • /
    • 2004
  • Recombinant E.coli ACV 1003 (recA::lacZ) releasing ${\beta}$-galactosidase by a SOS regulon system, when exposed to DNA-damaging compounds, have been used to effectively monitor endocrine disruptors. Low enzyme activity of less than 10 units/mL, corresponding to a $\mu\textrm{g}$/L(ppb) range of an endocrine disruptor (tributyl tin, bisphenol A. etc.), can be rapidly determined, not by a conventional time-consuming and tedious enzyme assay, but by an alternative interferometric biosensor. Heavily boron-doped porous silicon for application as an interferometer, was fabricated by etching to form a Fabry-Perot fringe pattern, which caused a change in the refractive index of the medium including ${\beta}$-galactosidase. In order to enhance the immobilization of the porous silicon surface, a calyx crown derivative (ProLinker A) was applied, instead of a conventional biomolecular affinity method using biotin. This resulted in a denser linked formation. The change in the effective optical thickness versus ${\beta}$-galactosidase activity, showed a linear increase up to a concentration of 150 unit ${\beta}$-galactosidase/mL, unlike the sigmoidal increase pattern observed with the biotin.

Fabrication of Probe Beam by Using Joule Heating and Fusing (절연절단법을 이용한 프로브 빔의 제작)

  • Hong, Pyo-Hwan;Kong, Dae-Young;Lee, Dong-In;Kim, Bonghwan;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • In this paper, we developed a beam of MEMS probe card using a BeCu sheet. Silicon wafer thickness of $400{\mu}m$ was fabricated by using deep reactive ion etching (RIE) process. After forming through silicon via (TSV), the silicon wafer was bonded with BeCu sheet by soldering process. We made BeCu beam stress-free owing to removing internal stress by using joule heating. BeCu beam was fused by using joule heating caused by high current. The fabricated BeCu beam measured length of 1.75 mm and width of 0.44 mm, and thickness of $15{\mu}m$. We measured fusing current as a function of the cutting planes. Maximum current was 5.98 A at cutting plane of $150{\mu}m^2$. The proposed low-cost and simple fabrication process is applicable for producing MEMS probe beam.

Fabrication of Microneedle Array Using Inclined LIGA Process (경사 LIGA 공정을 이용한 미세 바늘 어레이의 제작)

  • Moon, Sang-Jun;Lee, Seung-S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1871-1876
    • /
    • 2004
  • We demonstrate a novel fabrication technology for the microneedle array that can be used in the medical test field, which is transdermal drug delivery and blood analyte sampling. Previous researchers have used silicon-processed micromachining, a reactive ion etching, and molding techniques for the fabrication of microneedle array. However, these fabrication techniques have somewhat limitations apply to the microneedle array fabrication according to its application. Inclined LIGA process is suggested to overcome these problems. This process provides easier, sharper and longer out-of-plane microneedle array structure than conventional silicon-processed fabrication method did. Additionally, because of the advantage of the LIGA process based on mold fabrication for mass production, the polymer, PMMA(PolyMethylMethAcrylate), based microneedle array is useful as the mold base of nickel electroplating process; on the other hand, silicon-processed microneedle array is used in itself. In this research, we fabricate different types of out-of-plane microneedle array, which have different shape of tip, base and hole structure, using the inclined LIGA process. The fabricated microneedles have proper mechanical strength, height and sharpness to puncture human hand epidermis or dermis with less pain and without needle tip break during penetrating the skin.

Parametric Study of Picosecond Laser Hole Drilling for TSV (피코초 레이저의 공정변수에 따른 TSV 드릴링 특성연구)

  • Shin, Dong-Sig;Suh, Jeong;Kim, Jeng-O
    • Laser Solutions
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2010
  • Today, the most common process for generating Through Silicon Vias (TSVs) for 3D ICs is Deep Reactive Ion Etching (DRIE), which allows for high aspect ratio blind holes with low surface roughness. However, the DRIE process requires a vacuum environment and the use of expensive masks. The advantage of using lasers for TSV drilling is the higher flexibility they allow during manufacturing, because neither vacuum nor lithography or masks arc required and because lasers can be applied even to metal and to dielectric layers other than silicon. However, conventional nanosecond lasers have the disadvantage of causing heat affection around the target area. By contrast, the use of a picosecond laser enables the precise generation of TSVs with less heat affected zone. In this study, we conducted a comparison of thermalization effects around laser-drilled holes when using a picosecond laser set for a high pulse energy range and a low pulse energy range. Notably, the low pulse energy picosecond laser process reduced the experimentally recast layer, surface debris and melts around the hole better than the high pulse energy process.

  • PDF

Modeling of Silicon Etch in KOH for MEMS Based Energy Harvester Fabrication (MEMS기반 에너지 하베스터 제작을 위한 실리콘 KOH 식각 모형화)

  • Min, Chul-Hong;Gang, Gyeong-Woo;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.176-181
    • /
    • 2012
  • Due to the high etch rate and low fabrication cost, the wet etching of silicon using KOH etchant is widely used in MEMS fabrication area. However, anisotropic etch characteristic obstruct intuitional mask design and compensation structures are required for mask design level. Therefore, the accurate modeling for various types of silicon surface is essential for fabrication of three-dimensional MEMS structure. In this paper, we modeled KOH etch profile for MEMS based energy harvester using fuzzy logic. Modeling results are compared with experimental results and it is applied to design of compensation structure for MEMS based energy harvester. Through Fuzzy inference approaches, developed model showed good agreement with the experimental results with limited etch rate information.

Design and Fabrication of Silicon Flow Sensor For Detecting Air Flow (유속 감지를 위한 실리콘 유량센서의 설계 및 제작)

  • 이영주;전국진;부종욱;김성태
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.113-120
    • /
    • 1994
  • Silicon flow sensor that can detect the velocity and direction of air flow was designed and fabricated by integrated circuit process and bulk micromachining technique. The flow sensor consists of three-layered dielectric diaphragm, a heater at the center of the diaphragm, and four thermopiles surrounding the heater at each side of diaphragm as sensing elements. This diaphragm structure contributes to improve the sensitivity of the sensor due to excellent thermal isolation property of dielectric materials and their tiny thickness. The flow sensor has good axial symmetry to sense 2-D air flow with the optimized sensing position in the proposed structure. The sensor is fabricated using CMOS compatible process followed by the anisotropic etching of silicon in KOH and EDP solutions to form I$\mu$ m thick dielectric diaphragm as the last step. TCR(Temperature Coefficient of Resistance) of the heater of the fabricated sensors was measured to calculate the operating temperature of the heater and the output voltage of the sensor with respect to flow velocity was also measured. The TCR of the polysilicon heater resistor is 697ppm/K, and the operating temperature of the heater is 331$^{\circ}C$ when the applied voltage is 5V. Measured sensitivity of the sensor is 18.7mV/(m/s)$^{1/2}$ for the flow velocity of smaller than 10m/s.

  • PDF

A Vapor Sensor Based on a Porous Silicon Microcavity for the Determination of Solvent Solutions

  • Bui, Huy;Nguyen, Thuy Van;Nguyen, The Anh;Pham, Thanh Binh;Dang, Quoc Trung;Do, Thuy Chi;Ngo, Quang Minh;Coisson, Roberto;Pham, Van Hoi
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.301-306
    • /
    • 2014
  • A porous silicon microcavity (PSMC) sensor has been made for vapors of solvent solutions, and a method has been developed in order to obtain simultaneous determination of two volatile substances with different concentrations. In our work, the temperature of the solution and the velocity of the air stream flowing through the solution have been used to control the response of the sensor for ethanol and acetone solutions. We study the dependence of the cavity-resonant wavelength shift on solvent concentration, velocity of the airflow and solution temperature. The wavelength shift depends linearly on concentration and increases with solution temperature and velocity of the airflow. The dependence of the wavelength shift on the solution temperature in the measurement contains properties of the temperature dependence of the solvent vapor pressure, which characterizes each solvent. As a result, the dependence of the wavelength shift on the solution temperature discriminates between solutions of ethanol and acetone with different concentrations. This suggests a possibility for the simultaneous determination of the volatile substances and their concentrations.

Hydrophobicity and Nanotribological Properties of Silicon Channels coated by Diamond-like Carbon Films

  • Pham, Duc Cuong;Na, Kyung-Hwan;Pham, Van Hung;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.1-5
    • /
    • 2009
  • This paper reports an investigation on nanotribological properties of silicon nanochannels coated by a diamond-like carbon (DLC) film. The nanochannels were fabricated on Si (100) wafers by using photolithography and reactive ion etching (RIE) techniques. The channeled surfaces (Si channels) were then further modified by coating thin DLC film. Water contact angle of the modified and unmodified Si surfaces was examined by an anglemeter using the sessile-drop method. Nanotribological properties, namely friction and adhesion forces, of the Si channels coated with DLC (DLC-coated Si channels) were investigated in comparison with those of the flat Si, DLC-coated flat Si (flat DLC), and Si channels, using an atomic force microscope (AFM). Results showed that the DLC-coated Si channels greatly increased hydrophobicity of silicon surfaces. The DLC coating and Si channels themselves individually reduced adhesion and friction forces of the flat Si. Further, the DLC-coated Si channels exhibited the lowest values of these forces, owing to the combined effect of reduced contact area through the channeling and low surface energy of the DLC. This combined modification could prove a promising method for tribological applications at small scales.

Electrochemical Characteristics of Porous Modified Silicon Impregnated with Metal as Anode Materials for Lithium Secondary Batteries (리튬 이차전지용 금속이 담지된 다공성 실리콘 음극물질의 전기화학적 특성)

  • Jang, Eun-Jung;Jeon, Bup-Ju
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.353-363
    • /
    • 2012
  • The relationship between the diffusivity and electrochemical characteristics of lithium secondary battery with the modified Si anode material prepared in HF/$AgNO_3$ solution was investigated. The crystallographic structure and images of the modified porous Si and modified Si/Cu was examined using the X-ray diffraction, BET and SEM. To examine the effect of metal composite and pore size distribution according to chemical etching on the electrochemical characterization, the electrodes for half cells were prepared with the modified Si, modified Si/Cu, and modified Si/Cu annealed with $600^{\circ}C$. Our results showed that the chemical diffusivity of lithium ions was related to structure and resistance of Si/Cu composite anode material. The lithium diffusivity in modified silicon compound calculated from the CV was at the range of $1{\times}10^{-12}$ to $9{\times}10^{-16}cm^2/s$. The effects of modified silicon structure and resistance on the cycling efficiency were significant.

On the study of two luminescence band structfue from ambient air aged porous silicon (대기중에서 aged된 다공성 실리콘의 2가지 발광 band에 관한 연구)

  • Sung-Sik Chang;Akira Sakai
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.564-570
    • /
    • 1996
  • We have observed the red and blue luminescence from porous silicon (PS) without any rapid thermal oxidation. Aged porous silicon specimens prepared in dilute HF concentration, especially for the short duration of etching, display the increase of the blue band. The measured luminescence decay time at room temperature exhibits a decay time of about 100 ps and shows appreciably faster decay time than that of 20 K. No photoluminescence (PL) peak maximum shift is observed for the blue PL band at 77 K. However, the red PL band shows the blue shift and displays yellow luminescence at 77 K. The origin of red luminescence has some properties related to Si crystallites, whereas blue luminescence seems to be associated other than Si crystallites.

  • PDF