• Title/Summary/Keyword: Silicon etching

Search Result 740, Processing Time 0.027 seconds

Black Silicon of Pyramid Structure Formation According to the RIE Process Condition (RIE 공정 조건에 의한 피라미드 구조의 블랙 실리콘 형성)

  • Jo, Jun-Hwan;Kong, Dae-Young;Cho, Chan-Seob;Kim, Bong-Hwan;Bae, Young-Ho;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.207-212
    • /
    • 2011
  • In this study, pyramid structured black silicon process was developed in order to overcome disadvantages of using wet etching to texture the surface of single crystalline silicon and using grass/needle-like black silicon structure. In order to form the pyramidal black silicon structure on the silicon surface, the RIE system was modified to equip with metal-mesh on the top of head shower. The process conditions were : $SF_6/O_2$ gas flow 15/15 sccm, RF power of 200 W, pressure at 50 mTorr ~ 200 mTorr, and temperature at $5^{\circ}C$. The pressure did not affect the pyramid structure significantly. Increasing processing time increased the size of the pyramid, however, the size remained constant at 1 ${\mu}M$ ~ 2 ${\mu}M$ between 15 minutes ~ 20 minutes of processing. Pyramid structure of 1 ${\mu}M$ in size showed to have the lowest reflectivity of 7 % ~ 10 %. Also, the pyramid structure black silicon is more appropriate than the grass/needle-like black silicon when creating solar cells.

Fabrication of Knife type Si tip array by orientation dependent etching of single silicon substrate (단결정 Si 기판의 결정 의존성 식각에 의한 Knife형 Si tip array의 제조)

  • Jung, Yu-Ho;Ko, Chang-Gi;Kim, Chul-Ju;Ju, Byeong-Kwon;Oh, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1428-1430
    • /
    • 1995
  • In this study we fabricate Knife type Si-tip array using (110) Si wafer. We can fabricate vertical structure by anisotropic etching using EPW and observe it by SEM. After the step, we perform isotropic etching and oxidation sharpening of the structure and also observe it by SEM, respectively. The purpose of isotropic etching is to reduce the oxidation time. We attain a optimal tip whose radius is about $100{\AA}$ after anisotropic etching 2.25 min.+isotropic etching 5 min.+oxidation 1 hour and 23 min.

  • PDF

Fabrication of surface-enhanced Raman scattering substrate using black silicon layer manufactured through reactive ion etching (RIE 공정으로 제조된 블랙 실리콘(Black Silicon) 층을 사용한 표면 증강 라만 산란 기판 제작)

  • Kim, Hyeong Ju;Kim, Bonghwan;Lee, Dongin;Lee, Bong-Hee;Cho, Chanseob
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.267-272
    • /
    • 2021
  • In this study, Ag was deposited to investigate its applicability as a surface-enhanced Raman scattering substrate after forming a grass-type black silicon structure through maskless reactive ion etching. Grass-structured black silicon with heights of 2 - 7 ㎛ was formed at radio-frequency (RF) power of 150 - 170 W. The process pressure was 250 mTorr, the O2/SF6 gas ratio was 15/37.5, and the processing time was 10 - 20 min. When the processing time was increased by more than 20 min, the self-masking of SixOyFz did not occur, and the black silicon structure was therefore not formed. Raman response characteristics were measured based on the Ag thickness deposited on a black silicon substrate. As the Ag thickness increased, the characteristic peak intensity increased. When the Ag thickness deposited on the black silicon substrate increased from 40 to 80 nm, the Raman response intensity at a Raman wavelength of 1507 / cm increased from 8.2 × 103 to 25 × 103 cps. When the Ag thickness was 150 nm, the increase declined to 30 × 103 cps and showed a saturation tendency. When the RF power increased from 150 to 170 W, the response intensity at a 1507/cm Raman wavelength slightly increased from 30 × 103 to 33 × 103 cps. However, when the RF power was 200 W, the Raman response intensity decreased significantly to 6.2 × 103 cps.

Improvement of Repeatability during Dielectric Etching by Controlling Upper Electrode Temperature (Capacitively Coupled Plasma Source를 이용한 Etcher의 상부 전극 온도 변화에 따른 Etch 특성 변화 개선)

  • Shin, Han-Soo;Roh, Yong-Han;Lee, Nae-Eung
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.322-326
    • /
    • 2011
  • Etch process of silicon dioxide layer by using capacitively coupled plasma (CCP) is currently being used to manufacture semiconductor devices with nano-scale feature size below 50 nm. In typical CCP plasma etcher system, plasmas are generated by applying the RF power on upper electrode and ion bombardment energy is controlled by applying RF power to the bottom electrode with the Si wafer. In this case, however, etch results often drift due to heating of the electrode during etching process. Therefore, controlling the temperature of the upper electrode is required to obtain improvement of etch repeatability. In this work, we report repeatability improvement during the silicon dioxide etching under extreme process conditions with very high RF power and close gap between upper and bottom electrodes. Under this severe etch condition, it is difficult to obtain reproducible oxide etch results due to drifts in etch rate, critical dimension, profile, and selectivity caused by unexpected problems in the upper electrode. It was found that reproducible etch results of silicon dioxide layer could be obtained by controlling temperature of the upper electrode. Methods of controlling the upper electrode and the correlation with etch repeatability will be discussed in detail.

Fabrication of Silicon Micromechanical Structures by Stain Etching (스테인 에칭에 의한 실리콘 미세기계구조의 제조)

  • Yu, In-Sik;Sul, Jung-Hoon;Shin, Jang-Kyoo;Sim, Jun-Hwan;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.64-71
    • /
    • 1995
  • We have developed a silicon etching method by which highly doped layers are selectively etched using stain etching technique. Current supply to the backside contact of silicon wafer and special reactor are not required in this method. Therefore this method is much simpler than anodic reaction method and could be applied to standard VLSI process. In addition, highly doped layers of several wafer structures, including the structures where conventional anodic reaction method cannot be used, could be preferentially etched by this technique. We have also fabricated micromechanical structures such as cantilevers and air-bridges on the $n/n^{+}/n$ wafer and air-bridges on the $p/p^{+}$ wafer using this stain etching technique.

  • PDF

Fabrication via Ultrasonication and Study of Silicon Nanoparticles

  • Kim, Jin Soo;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.8 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Photoluminescent porous silicon (PSi) were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 620 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon nanocrystal in porous silicon. As-prepared PSi was sonicated, fractured, and centrifuged in toluene to obtain photoluminescence silicon quantum dots. BET and BHJ methods were employed to study the specific surface area of as-prepared PSi. Optical characterization of red photoluminescent silicon nanocrystal was investigated by UV-vis and fluorescence spectrometer. Also SEM and TEM images of porous silicon and nanoparticles were investigated.

Well Defined One-Dimensional Photonic Crystal Templated by Rugate Porous Silicon

  • Lee, Sung Gi
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.183-186
    • /
    • 2013
  • Well defined 1-dimentional (1-D) photonic crystals of polystyrene replicas have been successfully obtained by removing the porous silicon from the free-standing rugate porous silicon/phenylmethylpolysiloxane composite film. Rugate porous silicon was prepared by an electrochemical etching of silicon wafer in HF/ethanol mixture solution. Exfoliated rugate porous silicon was obtained by an electropolishing condition. A composite of rugate porous silicon/phenylmethylpolysiloxane composite film was prepared by casting a toluene solution of phenylmethylpolysiloxane onto the top of rugate porous silicon film. After the removal of the template by chemical dissolution, the phenylmethylpolysiloxane castings replicate the photonic features and the nanostructure of the master. The photonic phenylmethylpolysiloxane replicas are robust and flexible in ambient condition and exhibit an excellent reflectivity in their reflective spectra. The photonic band gaps of replicas are narrower than that of typical semiconductor quantum dots.

Reflectance spectrum properties of DBR and microcavity porous silicon (Distributed Bragg Reflector, Microcavity 구조를 갖는 다공질규소의 반사율 스펙트럼)

  • Kim, Young-You;Kim, Han-Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.293-297
    • /
    • 2009
  • In this paper, we made three kinds of porous silicon samples (single layer, distributed Bragg reflector, and microcavity) by electrochemical etching p-type silicon substrate. And then, we investigated their reflectance spectrum properties. We found that the number of fringe patterns and the maximum reflectivity of porous silicon multilayer increased compared with a porous silicon sinlge layer. In addition, we can observe that the DBR (distributed Bragg reflector) porous silicon has a full-width at half-maximum about 33 nm which is narrower than the porous silicon single layer and porous silicon microcavity.

Fabrication of Cylindrical Macroporous Silicon and Diaphragms (원통형 메크로기공을 갖는 다공질 실리콘과 다이어프램의 제작)

  • 민남기;이치우;하동식;정우식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.620-627
    • /
    • 1998
  • For chemical microsensors such as humidity and gas sensors, it is essential to obtain a single pore with a large inner surface and straight structure. In this paper, cylindrical macroporous silicon layers have been formed of p-silicon substrate by anodization in HF-ethanol-water solution with an applied current. The pores grew normal to the (100) surface and were uniformly distributed. The pore diameter was approximately $1.5~2{\mu}m$ with a depth of $20~30{\mu}m$ and the pores were not interconnected, which are in sharp contrast to the porous silicon reported previouly for similarly doped p-Si. Porous silicon diaphragms 18 to $200{\mu}m$ thick were formed by anistropic etching in TMAH solution and then anodization. The fabrication of macroporous silicon and free-standing diaphragms is expected to offer applications for microsensors, micromachining, and separators.

  • PDF