• Title/Summary/Keyword: Silica waste

Search Result 175, Processing Time 0.025 seconds

Durability and Strength of Dense Grate Permeable Concrete Using Silica sand and Flexible Alkyd Resin (유변성(油變性) 알키드 수지(樹脂)와 규사(硅砂)를 사용(使用)한 밀입도(密粒度) 투수(透水)콘크리트의 강도(强度) 및 내구특성(耐久特性))

  • Kim, In-Jung;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.36-42
    • /
    • 2010
  • Researches on resources recycling in the field of construction have made an extensive progress such as recycled aggregate of waste concrete and recycling of asphalt. On the other hand, there are almost never researches on pavement method with used waste frying oil. In South Korea, 0.2 million ton used waste frying oil is discharged every year. It is guessed that about 0.1 million ton used waste frying oil can be collected. If used waste frying oil is recycled, it is expected that disuse cost will be reduced and water pollution of rivers will be prevented. Therefore, the purpose of the study was to evaluate on mechanical features (strength, water resistance, chemical resistance, abrasion resistance, freezing and thawing resistance and permeable coefficient) whether dense graded permeable concrete mixing silica sand with flexible alkyd resin manufactured by making ester reaction with collected used waste frying oil to make alkyd resin could be applied to road pavement for non-roadway. The results of the study were as follows. In flexural strength, it had 1.6 times as much as road design standard 4.5MPa. In water resistance, chemistry resistance and freezing and thawing resistance, they had lack of strength in early age. As age went by, they didn't have large changes. And curing temperature had phenomenon of increase in strength at rather low temperature than high temperature by glass transition temperature of resin. Therefore, considering workability, strength and durability when it was applied to road pavement, it was reasonable that the mixing ratio of flexible alkyd resin was 10~15% in comparison with silica sand weight.

Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete

  • Li, Diyuan;Toghroli, Ali;Shariati, Mahdi;Sajedi, Fathollah;Bui, Dieu Tien;Kianmehr, Peiman;Mohamad, Edy Tonnizam;Khorami, Majid
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • Achieving a pervious concrete (PC) with appropriate physical and mechanical properties used in pavement have been strongly investigated through the use of different materials specifically from the global waste materials of the populated areas. Discarded tires and the rubber tire particles have been currently manufactured as the recycled waste materials. In the current study, the combination of polymer, silica fume and rubber aggregates from rubber tire particles have been used to obtain an optimized PC resulting that the PC with silica fume, polymer and rubber aggregate replacement to mineral aggregate has greater compressive and flexural strength. The related flexural and compressive strength of the produced PC has been increased 31% and 18% compared to the mineral PC concrete, also, the impact resistance has been progressed 8% compared to the mineral aggregate PC and the permeability with Open Graded Fraction Course standard (OGFC). While the manufactured PC has significantly reduced the elasticity modulus of usual pervious concrete, the impact resistance has been remarkably improved.

Characteristics of sustainable concrete incorporating recycled coarse aggregates and colloidal nano-silica

  • Mukharjee, Bibhuti Bhusan;Barai, Sudhirkumar V
    • Advances in concrete construction
    • /
    • v.3 no.3
    • /
    • pp.187-202
    • /
    • 2015
  • The present study addresses about the development of sustainable concrete utilizing recycled coarse aggregates manufactured form waste concrete and colloidal Nano-Silica. Experimental investigations are carried out to determine compressive and tensile strength of concrete mixes designed with recycled coarse aggregates and different percentages of Nano-Silica. Moreover, water absorption, density and volume voids of concrete mixes are also examined to ascertain the influence of Nano-Silica on behavior of recycled aggregate concrete. The outcomes of the research depict that properties of concrete mixes are significantly affected with the introduction of recycled coarse aggregates in place of the natural coarse aggregates. However, the study reveals that the depletion of behavior of recycled aggregate concrete could be restored with the incorporation of little amount (3%) of Nano-Silica.

Fabrication of Silica Nanoparticles by Recycling EMC Waste from Semiconductor Molding Process and Its Application to CMP Slurry (반도체 몰딩 공정에서 발생하는 EMC 폐기물의 재활용을 통한 실리카 나노입자의 제조 및 반도체용 CMP 슬러리로의 응용)

  • Ha-Yeong Kim;Yeon-Ryong Chu;Gyu-Sik Park;Jisu Lim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In this study, EMC(Epoxy molding compound) waste from the semiconductor molding process is recycled and synthesized into silica nanoparticles, which are then applied as abrasive materials contains CMP(Chemical mechanical polishing) slurry. Specifically, silanol precursor is extracted from EMC waste according to the ultra-sonication method, which provides heat and energy, using ammonia solution as an etchant. By employing as-extracted silanol via a facile sol-gel process, uniform silica nanoparticles(e-SiO2, experimentally synthesized SiO2) with a size of ca. 100nm are successfully synthesized. Through physical and chemical analysis, it was confirmed that e-SiO2 has similar properties compared to commercially available SiO2(c-SiO2, commercially SiO2). For practical CMP applications, CMP slurry is prepared using e-SiO2 as an abrasive and tested by polishing a semiconductor chip. As a result, the scratches that are roughly on the surface of the chip are successfully removed and turned into a smooth surface. Hence, the results present a recycling method of EMC waste into silica nanoparticles and the application to high-quality CMP slurry for the polishing process in semiconductor packaging.

Mechanical Properties of Silica Nanoparticle Reinforced poly(ethylene 2, 6-naphthalate)

  • Kim, Seong-Hun;Ahn, Seon-Hoon;Kim, Byoung-Chul;Shim, Kwang-Bo;Cho, Bong-Gyoo
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.293-302
    • /
    • 2004
  • We added surface-modified silica nanoparticles to poly(ethylene 2,6-naphthalate) (PEN) to investigate their effect on the mechanical properties on the PEN nanocomposite material. The torque and total torque values of the composites decreased in the silica nanoparticle composites. The tensile modulus of the composites reinforced with unmodified silica nanoparticles increased upon increasing the silica content, while the tensile strength and elongation decreased accordingly. In contrast, stearic acid-modified, silica nanoparticle reinforced PEN composites exhibited an increase in elongation and a decrease in tensile modulus upon addition of the silica nanoparticles because the stearic acid that had adsorbed onto the surface of the silica nanoparticle in multilayers could act as a plasticizer during melt compounding. Stearic acid modification had a small effect on the crystallization behavior of the composites. We calculated theoretical values of the tensile modulus using the Einstein, Kerner, and Nielsen equations and compared these values with the experimental data obtained from the composites. The parameters calculated using the Nielsen equation and the Nicolais- Narkis model revealed that the interfacial adhesion between silica nanoparticles and the PEN matrix could be improved.

Treatment of Waste Air Containing Malodor and VOC: 1. Effect of Photocatalyst-carrying Media Porosity on the Photocatalytic Removal Efficiency of Malodor and VOC of Waste Air (악취 및 VOC를 함유한 폐가스의 광촉매 처리: 1. 처리효율에 대한 광촉매담체 다공성의 영향)

  • Lee, Eun Ju;Park, Hyeri;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.945-951
    • /
    • 2012
  • The effect of photocatalyst-carrying media porosity on the photocatalytic removal efficiency of malodor and VOC of waste air was evaluated when the photocatalytic removal efficiency of porous silica-based media was compared with that of glass bead as control. The amount of photocatalyst coated on the surface of porous silica-based media was observed to be $1,716.3{\mu}g/cm^2$, which was 250% as much as that of nonporous glass bead (control) of $670{\mu}g/cm^2$. The removal efficiencies of hydrogen sulfide and toluene in case of porous silica-based media were observed to be 22% and 82%, respectively, while the removal efficiencies of hydrogen sulfide and toluene in case of nonporous glass bead media were observed to be 19% and 53%, respectively. Therefore, the removal efficiencies of hydrogen sulfide and toluene increased by 16% and 55%, respectively, when the removal efficiencies of porous silica-based media were compared with those of nonporous glass bead media. Thus the increment ratio of the removal efficiency of toluene was observed to be 3.4 times higher than that of hydrogen sulfide.