• 제목/요약/키워드: Silica slurry

검색결과 140건 처리시간 0.043초

혼합 연마제 슬러리를 이용한 Oxide CMP 특성에 관한 연구 (A Study on the Oxide CMP Characteristics of using Mixed Abrasive Slurry(MAS))

  • 이성일;박성우;이우선;서용진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1727-1728
    • /
    • 2006
  • Chemical mechanical polishing (CMP) technology has been widely used for global planarization of multi-level interconnection for ULSI applications. However, the cost of ownership and cost of consumables are relatively high because of expensive slurry. In this paper, we studied the mixed abrasive slurry(MAS). In order to save the costs of slurry, the original silica slurry was diluted by do-ionized water (DIW). And then, $ZrO_2$,$CeO_2$, and $MnO_2$ abrasives were added in the diluted slurry in order to promote the mechanical force of diluted slurry. We have also investigate the possibility of mixed abrasive slurry for the oxide CMP application.

  • PDF

초음파 분무를 이용한 세라믹 테이프의 성형 (fabrication of Ceramic Tape By Ultrasonic Spray)

  • 윤정한;박양수;심수만;이해원
    • 한국세라믹학회지
    • /
    • 제36권6호
    • /
    • pp.625-631
    • /
    • 1999
  • Ceramic tapes were fabricated by ultrasonically spraying slurries of monodispersed spherical and alumina powders. Effects of slurry compositions on tape forming were investigated. A relatively fast rate of solvent evaporation caused pores and cracks to be formed. A good chemical affinity between solvent and binder gave rise to binder separation resulting in inhomogeneous distribution of binder. Defect-free silica tapes with uniform distribution of particle packing and the binder were obtained from the solvent having a low chemical affinity and a slow evaporation rate and containing appropriate amounts of the binder and the plasticizer. Tape thickness could be controlled by adjusting solids loadings and slurry feed rates. It was possible to fabricate a tape in 15 $\mu\textrm{m}$ thickness from 7 vol% alumina slurry.

  • PDF

Polishing Mechanism of TEOS-CMP with High-temperature Slurry by Surface Analysis

  • Kim, Nam-Hoon;Seo, Yong-Jin;Ko, Pil-Ju;Lee, Woo-Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권4호
    • /
    • pp.164-168
    • /
    • 2005
  • Effects of high-temperature slurry were investigated on the chemical mechanical polishing (CMP) performance of tetra-ethyl ortho-silicate (TEOS) film with silica and ceria slurries by the surface analysis of X-ray photoelectron spectroscopy (XPS). The pH showed a slight tendency to decrease with increasing slurry temperature, which means that the hydroxyl $(OH^-)$ groups increased in slurry as the slurry temperature increased and then they diffused into the TEOS film. The surface of TEOS film became hydro-carbonated by the diffused hydroxyl groups. The hydro-carbonated surface of TEOS film could be removed more easily. Consequently, the removal rate of TEOS film improved dramatically with increasing slurry temperature.

반도체 몰딩 공정에서 발생하는 EMC 폐기물의 재활용을 통한 실리카 나노입자의 제조 및 반도체용 CMP 슬러리로의 응용 (Fabrication of Silica Nanoparticles by Recycling EMC Waste from Semiconductor Molding Process and Its Application to CMP Slurry)

  • 김하영;추연룡;박규식;임지수;윤창민
    • 유기물자원화
    • /
    • 제32권1호
    • /
    • pp.21-29
    • /
    • 2024
  • 본 연구에서는 반도체 패키징의 몰딩 공정에서 발생하는 EMC 폐기물을 재활용하여 실리카 나노입자를 성공적으로 제조하였으며, 이를 CMP 공정용 슬러리의 연마재 물질로 응용하였다. 상세히는, EMC 폐기물을 암모니아 용액과 소니케이터를 활용하여 열과 에너지를 가하는 에칭 과정을 통해 실리카 나노입자를 제조하기 위한 실라놀 전구체를 추출하였다. 이후 실라놀 전구체를 활용하여 졸-겔법을 통해 약 100nm를 나타내는 균일한 구형의 실리카 나노입자(e-SiO2, experimentally synthesized SiO2)를 합성하였다. 제조한 e-SiO2는 물리화학적 분석을 통해 상용화된 실리카 입자(c-SiO2, commercially SiO2)와 동일한 형상과 구조를 지니고 있음을 확인할 수 있었다. 최종적으로, e-SiO2를 연마재로 사용하여 CMP 공정용 슬러리를 제조하여 실제적인 반도체 칩의 연마 성능을 확인하였다. 그 결과, 반도체 칩의 표면에 존재하던 스크래치가 성공적으로 제거되어 매끈한 표면으로 바뀌게 된 것을 확인하였다. 본 연구 결과는 물질의 재활용법에 대한 설계를 통해 EMC 폐기물의 부가가치를 향상시키기 위하여 반도체 공정에서 대표적으로 활용되는 고부가가치 소재인 실리카 입자로 성공적으로 제조하고 이를 응용하는 방법에 대해 제시하였다.

Cu-CMP에서 Alanine이 Cu와 TaN의 선택비에 미치는 영향 (Effect of Alanine on Cu/TaN Selectivity in Cu-CMP)

  • 박진형;김민석;백운규;박재근
    • 한국재료학회지
    • /
    • 제15권6호
    • /
    • pp.426-430
    • /
    • 2005
  • Chemical mechanical polishing (CMP) is an essential process in the production of integrated circuits containing copper interconnects. The effect of alanine in reactive slurries representative of those that might be used in copper CMP was studied with the aim of improving selectivity between copper(Cu) film and tantalum-nitride(TaN) film. We investigated the pH effect of nano-colloidal silica slurry containing alanine through the chemical mechanical polishing test for the 8(inch) blanket wafers as deposited Cu and TaN film, respectively. The copper and tantalum-nitride removal rate decreased with the increase of pH and reaches the neutral at pH 7, then, with the further increase of pH to alkaline, the removal rate rise to increase soddenly. It was found that alkaline slurry has a higher removal rate than acidic and neutral slurries for copper film, but the removal rate of tantalum-nitride does not change much. These tests indicated that alanine may improve the CMP process by controlling the selectivity between Cu and TaN film.

CMP 슬러리 연마제의 어닐링 효과 (Annealing effects of CMP slurry abrasives)

  • 박창준;정소영;김철복;최운식;서용진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 제5회 학술대회 논문집 일렉트렛트 및 응용기술연구회
    • /
    • pp.105-108
    • /
    • 2003
  • CMP(chemical mechanical polishing) process has been attracted as an essential technology of multi-level interconnection. However, the COO(cost of ownership) is very high, because of high consumable cost. Especially, among the consumables, slurry dominates more than 40 %. So, we focused how to reduce the consumption of raw slurry. In this paper, We have studied the CMP (chemical mechanical polishing) characteristics of slurry by adding of raw alumina abrasive and annealed alumina abrasive. As a experimental results, we obtained the comparable slurry characteristics compared with original silica slurry in the view point of high removal rate and low non-uniformity. Therefore, we can reduce the cost of consumables(COC) of CMP process for ULSI applications.

  • PDF