• Title/Summary/Keyword: Signalling Pathway

Search Result 67, Processing Time 0.025 seconds

mTOR signalling pathway - A root cause for idiopathic autism?

  • Ganesan, Harsha;Balasubramanian, Venkatesh;Iyer, Mahalaxmi;Venugopal, Anila;Subramaniam, Mohana Devi;Cho, Ssang-Goo;Vellingiri, Balachandar
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.424-433
    • /
    • 2019
  • Autism spectrum disorder (ASD) is a complex neurodevelopmental monogenic disorder with a strong genetic influence. Idiopathic autism could be defined as a type of autism that does not have a specific causative agent. Among signalling cascades, mTOR signalling pathway plays a pivotal role not only in cell cycle, but also in protein synthesis and regulation of brain homeostasis in ASD patients. The present review highlights, underlying mechanism of mTOR and its role in altered signalling cascades as a triggering factor in the onset of idiopathic autism. Further, this review discusses how distorted mTOR signalling pathway stimulates truncated translation in neuronal cells and leads to downregulation of protein synthesis at dendritic spines of the brain. This review concludes by suggesting downstream regulators such as p70S6K, eIF4B, eIF4E of mTOR signalling pathway as promising therapeutic targets for idiopathic autistic individuals.

The mTOR Signalling Pathway in Cancer and the Potential mTOR Inhibitory Activities of Natural Phytochemicals

  • Tan, Heng Kean;Moad, Ahmed Ismail Hassan;Tan, Mei Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6463-6475
    • /
    • 2014
  • The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.

Complex Interplay between the RUNX Transcription Factors and Wnt/β-Catenin Pathway in Cancer: A Tango in the Night

  • Sweeney, Kerri;Cameron, Ewan R.;Blyth, Karen
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.188-197
    • /
    • 2020
  • Cells are designed to be sensitive to a myriad of external cues so they can fulfil their individual destiny as part of the greater whole. A number of well-characterised signalling pathways dictate the cell's response to the external environment and incoming messages. In healthy, well-ordered homeostatic systems these signals are tightly controlled and kept in balance. However, given their powerful control over cell fate, these pathways, and the transcriptional machinery they orchestrate, are frequently hijacked during the development of neoplastic disease. A prime example is the Wnt signalling pathway that can be modulated by a variety of ligands and inhibitors, ultimately exerting its effects through the β-catenin transcription factor and its downstream target genes. Here we focus on the interplay between the three-member family of RUNX transcription factors with the Wnt pathway and how together they can influence cell behaviour and contribute to cancer development. In a recurring theme with other signalling systems, the RUNX genes and the Wnt pathway appear to operate within a series of feedback loops. RUNX genes are capable of directly and indirectly regulating different elements of the Wnt pathway to either strengthen or inhibit the signal. Equally, β-catenin and its transcriptional co-factors can control RUNX gene expression and together they can collaborate to regulate a large number of third party co-target genes.

N-terminal GNBP homology domain of Gram-negative binding protein 3 functions as a beta-1,3-glucan binding motif in Tenebrio molitor

  • Lee, Han-Na;Kwon, Hyun-Mi;Park, Ji-Won;Kurokawa, Kenji;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.506-510
    • /
    • 2009
  • The Toll signalling pathway in invertebrates is responsible for defense against Gram-positive bacteria and fungi, leading to the expression of antimicrobial peptides via NF-$\kappa$B-like transcription factors. Gram-negative binding protein 3 (GNBP3) detects beta-1,3-glucan, a fungal cell wall component, and activates a three step serine protease cascade for activation of the Toll signalling pathway. Here, we showed that the recombinant N-terminal domain of Tenebrio molitor GNBP3 bound to beta-1,3-glucan, but did not activate down-stream serine protease cascade in vitro. Reversely, the N-terminal domain blocked GNBP3-mediated serine protease cascade activation in vitro and also inhibited beta-1,3-glucan-mediated antimicrobial peptide induction in Tenebrio molitor larvae. These results suggest that the N-terminal GNBP homology domain of GNBP3 functions as a beta-1,3-glucan binding domain and the C-terminal domain of GNBP3 may be required for the recruitment of immediate down-stream serine protease zymogen during Toll signalling pathway activation.

Photobiomodulation therapy activates YAP and triggers proliferation and dedifferentiation of Müller glia in mammalian retina

  • Seo-Yeon Kim;Myung-Jun Song;In-Beom Kim;Tae Kwan Park;Jungmook Lyu
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.502-507
    • /
    • 2023
  • Photobiomodulation therapy has been proposed as a promising therapeutic approach for retinal degenerative diseases. However, its effect on the regenerative capacity in mammalian retina and its intracellular signalling mechanisms remain unknown. Here, we show that photobiomodulation with 670 nm light stimulates Müller glia cell cycle re-entry and dedifferentiation into a progenitor-like state in both the uninjured and injured retina. We also find that 670 nm light treatment inhibits the Hippo pathway, which is activated in Müller glia following NaIO3-induced retinal injury. YAP, a major downstream effector of the Hippo signalling pathway was translocated into the nucleus of Müller glia along with YAP dephosphorylation in retina treated with 670 nm light. Deficiency of YAP attenuated Müller glia cell cycle re-entry and dedifferentiation. Our data reveal that the Hippo-YAP signalling pathway is associated with the photostimulatory effect on regenerative response in mammalian retina, and suggest a potential therapeutic strategy for retinal degenerative diseases.

Micronized and Heat-Treated Lactobacillus plantarum LM1004 Stimulates Host Immune Responses Via the TLR-2/MAPK/NF-κB Signalling Pathway In Vitro and In Vivo

  • Lee, Jisun;Jung, Ilseon;Choi, Ji Won;Lee, Chang Won;Cho, Sarang;Choi, Tae Gyu;Sohn, Minn;Park, Yong Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.704-712
    • /
    • 2019
  • Although nanometric dead Lactobacillus plantarum has emerged as a potentially important modulator of immune responses, its underlying mechanism of action has not been fully understood. This study aimed to identify the detailed biochemical mechanism of immune modulation by micronized and heat-treated L. plantarum LM1004 (MHT-LM1004, <$1{\mu}m$ in size). MHT-LM1004 was prepared from L. plantarum LM1004 via culture in a specifically designed membrane bioreactor and heat treatment. MHT-LM1004 was shown to effectively induce the secretion of $TNF-{\alpha}$ and IL-6 and the mRNA expression of inducible nitric oxide synthase (iNOS). MHT-LM1004 enhanced the expression of TLR-2, phosphorylation of MAPKs (ERK), and nuclear translocation of $NF-{\kappa}B$ in a dose-dependent manner. Oral administration of MHT-LM1004 ($4{\times}10^9$ or $4{\times}10^{11}cells/kg$ mouse body weight) increased the splenocyte proliferation and serum cytokine levels. These results suggested that MHT-LM1004 effectively enhances early innate immunity by activating macrophages via the TLR-2/MAPK/$NF-{\kappa}B$ signalling pathway and that this pathway is one of the major routes in immune modulation by the Lactobacillus species.

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

Overexpression of GAP Causes the Delay of NGF-induced Neuronal Differentiation and the Inhibition of Tyrosine Phosphorylation of SNT in PC12 Cells

  • Yang, Sung-Il;Kaplan, David
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.316-322
    • /
    • 1995
  • The GTPase activating protein (GAP) can function both as a negative regulator and an effector of $p21^{ras}$. Overexpression of GAP in NIH-3T3 cells has been shown to inhibit transformation by ms or src. To investigate the function of GAP in a differentiative system, we overexpressed this protein in the nerve growth factor (NGF)-responsive PC12 cell line. Two-fold overexpression of GAP caused a delay of several days in the onset of NGF- but not FGF-induced neuronal differentiation of PC12 cells. However, the NGF-induced activation or tyrosine phosphorylation of upstream (Trk, PLC-${\gamma}1$, SHC) and downstream (B-Raf and $p44^{mapk/erk1}$) components of $p21^{ras}$, signalling cascade was not altered by GAP overexpression. Therefore, the change of phenotype induced by GAP was probably not due to GAP functioning as a negative regulator of $p21^{ras}$. Rather, we found that NGF-induced tyrosine phosphorylation of SNT, a specific target of neurotrophin-induced tyrosine kinase activity, was inhibited by GAP overexpression. SNT is thought to function upstream or independent of $p21^{ras}$. Thus in PC12 cells, overexpressed GAP may control the rate of neuronal differentiation through a pathway involving SNT rather than the $p21^{ras}$ signalling pathway.

  • PDF

Mitogen-activated $p70^{s6k}$ signalling pathway

  • Han, Jeung-Whan
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.11a
    • /
    • pp.135-139
    • /
    • 1996
  • $p70^{s6k}$ lies on a $p21^{ras}$-independent signalling pathway and plays an important role in mitogenesis. Activation is associated with phosphorylation at multiple sites, four of which lie in an autoinhibitory region. The immunosuppressant rapamycin induces $p70^{s6k}$ inactivation through dephosphorylation of a second set of mitogen-induced sites. Here we identify these sites as $T_{229}$, $T_{389}$, and $S_{404}$. $T_{229}$ resides in the "T loop" of the catalytic domain, an essential phosphorylation site in other kinases. However, $p70^{s6k}$ inactivation by rapamycin most closely parallels $T_{389}$ dephosphorylation. Mutation of $T_{389}$ to alanine ablates kinase activity, whereas mutation to glutamic acid confers constitutive kinase activity and rapamycin resistance. indicating an essential role for phosphorylation at this site. $T_{389}$ resides in an unusual hydrophobic motif, not previously noted, between the catalytic and autoinhibitory domains. The importance of this site, and surrounding motif, is emphasized by its conservation in other kinases including homologues of $p70^{s6k}$ derived from such distantly related organisms as yeast and plant.

  • PDF

From Recognition to Defense Responses in Rice Plant

  • Jwa, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.13-13
    • /
    • 2003
  • When plants are infected by plant pathogens, rapid cell responses are initiated for further inhibition from fast invasion of pathogens. Hypersensitive response (HR) of plant is well known defense response stopping pathogenesis process through rapid cell death. However, informations on the signaling pathway from reception of pathogen by host plants to appropriate resistant responses are very limited to date. Efficient perception of infection by pathogens and well-programmed signalling mechanism for appropriate responses are important for survival of plants. Plant have developed a sophisticated network(s) of defense/stress responses, among which one of the earliest signalling pathways after perception (of stimuli) is the evolutionary conserved Rop GTPase and mitogen-activated protein kinase (MAPK) cascade.(중략)

  • PDF