References
- Medzhitov, R. and Janeway, C. A., Jr. (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295-298 https://doi.org/10.1016/S0092-8674(00)80412-2
- Ferrandon, D., Imler, J. L., Hetru, C. and Hoffmann, J. A. (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat. Rev. Immunol. 7, 862-874 https://doi.org/10.1038/nri2194
- Medzhitov, R. and Janeway, C. A., Jr. (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296, 298-300 https://doi.org/10.1126/science.1068883
- Royet, J., Reichhart, J. M. and Hoffmann, J. A. (2005) Sensing and signaling during infection in Drosophila. Curr. Opin. Immunol. 17, 11-17 https://doi.org/10.1016/j.coi.2004.12.002
- Cherry, S. and Silverman, N. (2006) Host-pathogen interactions in Drosophila: new tricks from an old friend. Nat. Immunol. 7, 911-917 https://doi.org/10.1038/ni1388
- Lemaitre, B. and Hoffmann, J. (2007) The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697- 743 https://doi.org/10.1146/annurev.immunol.25.022106.141615
- Michel, T., Reichhart, J. M., Hoffmann, J. A. and Royet, J. (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756-759 https://doi.org/10.1038/414756a
- Leulier, F., Parquet, C., Pili-Floury, S., Ryu, J. H., Caroff, M., Lee, W. J., Mengin-Lecreulx, D. and Lemaitre, B. (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 4, 478-484 https://doi.org/10.1038/ni922
- Park, J. W., Kim, C. H., Kim, J. H., Je, B. R., Roh, K. B., Kim, S. J., Lee, H. H., Ryu, J. H., Lim, J. H., Oh, B. H., Lee, W. J., Ha, N. C. and Lee, B. L. (2007) Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proc. Natl. Acad. Sci. U.S.A. 104, 6602-6607 https://doi.org/10.1073/pnas.0610924104
- Kim, C. H., Park, J. W., Ha, N. C., Kang, H. J. and Lee, B. L. (2008) Innate immune response in insects: recognition of bacterial peptidoglycan and amplification of its recognition signal. BMB Rep. 41, 93-101
- Levashina, E. A., Langley, E., Green, C., Gubb, D., Ashburner, M., Hoffmann, J. A. and Reichhart, J. M. (1999) Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917-1919 https://doi.org/10.1126/science.285.5435.1917
- Gottar, M., Gobert, V., Matskevich, A. A., Reichhart, J. M., Wang, C., Butt, T. M., Belvin, M., Hoffmann, J. A. and Ferrandon, D. (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127, 1425-1437 https://doi.org/10.1016/j.cell.2006.10.046
- Kim, C. H., Kim, S. J., Kan, H., Kwon, H. M., Roh, K. B., Jiang, R., Yang, Y., Park, J. W., Lee, H. H., Ha, N. C., Kang, H. J., Nonaka, M., Soderhall, K. and Lee, B. L. (2008) A three-step proteolytic cascade mediates the activation of the peptidoglycan-induced toll pathway in an Insect. J. Biol. Chem. 283, 7599-7607 https://doi.org/10.1074/jbc.M710216200
- Kan, H., Kim, C. H., Kwon, H. M., Park, J. W., Roh, K. B., Lee, H., Park, B. J., Zhang, R., Zhang, J., Soderhall, K., Ha, N. C. and Lee, B. L. (2008) Molecular control of phenoloxidase- induced melanin synthesis in an insect. J. Biol. Chem. 283, 25316-25323 https://doi.org/10.1074/jbc.M804364200
- Roh, K. B., Kim, C. H., Lee, H., Kwon, H. M., Park, J. W., Ryu, J. H., Kurokawa, K., Ha, N. C., Lee, W. J., Lemaitre, B., Soderhall, K. and Lee, B. L. (2009) Proteolytic cascade for the activation of the insect Toll pathway induced by the fungal cell wall component. J. Biol. Chem. (In press)
- Zhang, R., Cho, H. Y., Kim, H. S., Ma, Y. G., Osaki, T., Kawabata, S., Soderhall, K. and Lee, B. L. (2003) Characterization and properties of a 1,3-beta-D-glucan pattern recognition protein of Tenebrio molitor larvae that is specifically degraded by serine protease during prophenoloxidase activation. J. Biol. Chem. 278, 42072-42079 https://doi.org/10.1074/jbc.M307475200
- Ferrandon, D., Imler, J. L. and Hoffmann, J. A. (2004) Sensing infection in Drosophila: Toll and beyond. Semin. Immunol. 16, 43-53 https://doi.org/10.1016/j.smim.2003.10.008
- Kim, Y. S., Ryu, J. H., Han, S. J., Choi, K. H., Nam, K. B., Jang, I. H., Lemaitre, B., Brey, P. T. and Lee, W. J. (2000) Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and beta-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J. Biol. Chem. 275, 32721-32727 https://doi.org/10.1074/jbc.M003934200
Cited by
- Recognition of microbial molecular patterns and stimulation of prophenoloxidase activation by a β-1,3-glucanase-related protein in Manduca sexta larval plasma vol.41, pp.5, 2011, https://doi.org/10.1016/j.ibmb.2011.01.010
- Identification and sequence analysis of two thaumatin-like protein (TmTLP) genes fromTenebrio molitor vol.46, pp.6, 2016, https://doi.org/10.1111/1748-5967.12198
- Structural Insights into Recognition of Triple-helical β-Glucans by an Insect Fungal Receptor vol.286, pp.33, 2011, https://doi.org/10.1074/jbc.M111.256701
- Antimicrobial and Antitumor Activities of Novel Peptides Derived from the Lipopolysaccharide- and β-1,3-Glucan Binding Protein of the Pacific Abalone Haliotis discus hannai vol.14, pp.12, 2016, https://doi.org/10.3390/md14120227
- The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability vol.7, pp.8, 2016, https://doi.org/10.3390/genes7080053
- Comprehensive cross-genome survey and phylogeny of glycoside hydrolase family 16 members reveals the evolutionary origin of EG16 and XTH proteins in plant lineages vol.95, pp.6, 2018, https://doi.org/10.1111/tpj.14004