DOI QR코드

DOI QR Code

N-terminal GNBP homology domain of Gram-negative binding protein 3 functions as a beta-1,3-glucan binding motif in Tenebrio molitor

  • Lee, Han-Na (National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University) ;
  • Kwon, Hyun-Mi (National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University) ;
  • Park, Ji-Won (National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University) ;
  • Kurokawa, Kenji (National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University) ;
  • Lee, Bok-Luel (National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University)
  • Published : 2009.08.31

Abstract

The Toll signalling pathway in invertebrates is responsible for defense against Gram-positive bacteria and fungi, leading to the expression of antimicrobial peptides via NF-$\kappa$B-like transcription factors. Gram-negative binding protein 3 (GNBP3) detects beta-1,3-glucan, a fungal cell wall component, and activates a three step serine protease cascade for activation of the Toll signalling pathway. Here, we showed that the recombinant N-terminal domain of Tenebrio molitor GNBP3 bound to beta-1,3-glucan, but did not activate down-stream serine protease cascade in vitro. Reversely, the N-terminal domain blocked GNBP3-mediated serine protease cascade activation in vitro and also inhibited beta-1,3-glucan-mediated antimicrobial peptide induction in Tenebrio molitor larvae. These results suggest that the N-terminal GNBP homology domain of GNBP3 functions as a beta-1,3-glucan binding domain and the C-terminal domain of GNBP3 may be required for the recruitment of immediate down-stream serine protease zymogen during Toll signalling pathway activation.

Keywords

References

  1. Medzhitov, R. and Janeway, C. A., Jr. (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295-298 https://doi.org/10.1016/S0092-8674(00)80412-2
  2. Ferrandon, D., Imler, J. L., Hetru, C. and Hoffmann, J. A. (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat. Rev. Immunol. 7, 862-874 https://doi.org/10.1038/nri2194
  3. Medzhitov, R. and Janeway, C. A., Jr. (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296, 298-300 https://doi.org/10.1126/science.1068883
  4. Royet, J., Reichhart, J. M. and Hoffmann, J. A. (2005) Sensing and signaling during infection in Drosophila. Curr. Opin. Immunol. 17, 11-17 https://doi.org/10.1016/j.coi.2004.12.002
  5. Cherry, S. and Silverman, N. (2006) Host-pathogen interactions in Drosophila: new tricks from an old friend. Nat. Immunol. 7, 911-917 https://doi.org/10.1038/ni1388
  6. Lemaitre, B. and Hoffmann, J. (2007) The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697- 743 https://doi.org/10.1146/annurev.immunol.25.022106.141615
  7. Michel, T., Reichhart, J. M., Hoffmann, J. A. and Royet, J. (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756-759 https://doi.org/10.1038/414756a
  8. Leulier, F., Parquet, C., Pili-Floury, S., Ryu, J. H., Caroff, M., Lee, W. J., Mengin-Lecreulx, D. and Lemaitre, B. (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 4, 478-484 https://doi.org/10.1038/ni922
  9. Park, J. W., Kim, C. H., Kim, J. H., Je, B. R., Roh, K. B., Kim, S. J., Lee, H. H., Ryu, J. H., Lim, J. H., Oh, B. H., Lee, W. J., Ha, N. C. and Lee, B. L. (2007) Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proc. Natl. Acad. Sci. U.S.A. 104, 6602-6607 https://doi.org/10.1073/pnas.0610924104
  10. Kim, C. H., Park, J. W., Ha, N. C., Kang, H. J. and Lee, B. L. (2008) Innate immune response in insects: recognition of bacterial peptidoglycan and amplification of its recognition signal. BMB Rep. 41, 93-101
  11. Levashina, E. A., Langley, E., Green, C., Gubb, D., Ashburner, M., Hoffmann, J. A. and Reichhart, J. M. (1999) Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917-1919 https://doi.org/10.1126/science.285.5435.1917
  12. Gottar, M., Gobert, V., Matskevich, A. A., Reichhart, J. M., Wang, C., Butt, T. M., Belvin, M., Hoffmann, J. A. and Ferrandon, D. (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127, 1425-1437 https://doi.org/10.1016/j.cell.2006.10.046
  13. Kim, C. H., Kim, S. J., Kan, H., Kwon, H. M., Roh, K. B., Jiang, R., Yang, Y., Park, J. W., Lee, H. H., Ha, N. C., Kang, H. J., Nonaka, M., Soderhall, K. and Lee, B. L. (2008) A three-step proteolytic cascade mediates the activation of the peptidoglycan-induced toll pathway in an Insect. J. Biol. Chem. 283, 7599-7607 https://doi.org/10.1074/jbc.M710216200
  14. Kan, H., Kim, C. H., Kwon, H. M., Park, J. W., Roh, K. B., Lee, H., Park, B. J., Zhang, R., Zhang, J., Soderhall, K., Ha, N. C. and Lee, B. L. (2008) Molecular control of phenoloxidase- induced melanin synthesis in an insect. J. Biol. Chem. 283, 25316-25323 https://doi.org/10.1074/jbc.M804364200
  15. Roh, K. B., Kim, C. H., Lee, H., Kwon, H. M., Park, J. W., Ryu, J. H., Kurokawa, K., Ha, N. C., Lee, W. J., Lemaitre, B., Soderhall, K. and Lee, B. L. (2009) Proteolytic cascade for the activation of the insect Toll pathway induced by the fungal cell wall component. J. Biol. Chem. (In press)
  16. Zhang, R., Cho, H. Y., Kim, H. S., Ma, Y. G., Osaki, T., Kawabata, S., Soderhall, K. and Lee, B. L. (2003) Characterization and properties of a 1,3-beta-D-glucan pattern recognition protein of Tenebrio molitor larvae that is specifically degraded by serine protease during prophenoloxidase activation. J. Biol. Chem. 278, 42072-42079 https://doi.org/10.1074/jbc.M307475200
  17. Ferrandon, D., Imler, J. L. and Hoffmann, J. A. (2004) Sensing infection in Drosophila: Toll and beyond. Semin. Immunol. 16, 43-53 https://doi.org/10.1016/j.smim.2003.10.008
  18. Kim, Y. S., Ryu, J. H., Han, S. J., Choi, K. H., Nam, K. B., Jang, I. H., Lemaitre, B., Brey, P. T. and Lee, W. J. (2000) Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and beta-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J. Biol. Chem. 275, 32721-32727 https://doi.org/10.1074/jbc.M003934200

Cited by

  1. Recognition of microbial molecular patterns and stimulation of prophenoloxidase activation by a β-1,3-glucanase-related protein in Manduca sexta larval plasma vol.41, pp.5, 2011, https://doi.org/10.1016/j.ibmb.2011.01.010
  2. Identification and sequence analysis of two thaumatin-like protein (TmTLP) genes fromTenebrio molitor vol.46, pp.6, 2016, https://doi.org/10.1111/1748-5967.12198
  3. Structural Insights into Recognition of Triple-helical β-Glucans by an Insect Fungal Receptor vol.286, pp.33, 2011, https://doi.org/10.1074/jbc.M111.256701
  4. Antimicrobial and Antitumor Activities of Novel Peptides Derived from the Lipopolysaccharide- and β-1,3-Glucan Binding Protein of the Pacific Abalone Haliotis discus hannai vol.14, pp.12, 2016, https://doi.org/10.3390/md14120227
  5. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability vol.7, pp.8, 2016, https://doi.org/10.3390/genes7080053
  6. Comprehensive cross-genome survey and phylogeny of glycoside hydrolase family 16 members reveals the evolutionary origin of EG16 and XTH proteins in plant lineages vol.95, pp.6, 2018, https://doi.org/10.1111/tpj.14004